Domain Services



Table of Contents

1. DOMAIN SEIVICES . . . ottt e e e e e d.....
1.1, Other GUIAES . . . e e d.....
2. INtrOdUCHION . 2.....
2.1. Types of DOMain SEIVICE . . . ...t e 2....
2.2, PUDIIC AP L 8.....
2.3.USING the SEIVICES . . . .o o B....
2.4.0verriding the SEIVICES . .. .o 8....
3. Presentation Layer SPI . ... 6....
3.1. ContentMapPINgSEIVICE. . . . .ttt e e e e e e e e e e e 9....
3.2. EmailNOtificatiONSEeIVICE . ... d0. ..
3.3. EIMMOrREPOIINGSEIVICE . . . oottt e e d2. ..
3.4, EXCEPUIONRECOGNIZEN . . . o o ottt d5. ..
3.5, GlASYSIEMSEIVICE. . . . .t e e e AT ...
3.6. GrALOAUEISEIVICE . . . . e ettt e e e e e e e e A9. ..
7. GlASEIVICE . . e 20. ...
3.8 HINES O e . .o 21. ...
3.9. LOCalePrOVIdEr . . oo 23 ...
3.10. ROULINGSBIVICE . . oot e e e e e e e e e e 24 ...
3. 11 TranslatioNSeIVICE . . .. oo 25. ..
3.12. TranslationSRESOIVEr . . . .. e 26. ..
3.13. UMENCOAINGSEIVICE . . . o oottt e e e e e e e e e e 27. ..
3.14. USerProfileServiCe . . ... 28. ..
4. Presentation Layer internal SPl . . ... 80 ..
4.1. ContentNegotiatiONSEIVICE . . . .. oo e S0. ..
4.2. RepresentatiONSEeIVICE . . . ...ttt e e e e 86. ..
5. Application Layer APl .. 89...
5.1, AcCeptHeaderSerIVICE. . . . . o 40. ..
5.2, ACtionINvocatioNCONTEXE . . . .ottt e 42. ..
5.3. BaCKgrOUNASEIVICE. . . . ..t e e e a4 ...
5.4, CommandCoONteXE. . . . .ot e &l ...
5. 5. MEBSSAgESEIVICE . . . o oot e b5 ...
5.6. SESSIONMaNageMEeNISEIVICE. . . . . ..ttt ettt ettt e e e e e o7, ..
D 7. T e S IVICE . .o b8, ...
5.8. TranSaCliONSEIVICE . . . . oo e H9. ..
5.9, WrapperFacCtory. . . . ..o 60. . ..
6. Application Layer SPl ... . 64 ...
6.1. BackgroundCommandSerViCE. . . . . . ...ttt t e e 65. . .

6.2. COMMANASEIVICE . . . . ot ot et e e e e e e e e e e e e 67 ...



6.3. HOMePageProViderSerViCe . . . . ..o e e e e 69. . .

7. Core/Domain APl 0. ...
7.0 CIOCKSEIVICE . . o oo e gl ...
7.2, CoNfigUIraliONSEIVICE . . o e g4, ..
7.3. DOMainObjeCtCONtAINE. . . . .\ttt e e e 5. ..
7.4 BEVeNtBUSSEIVICE. . . oo 85 ...
A T = T 0] V2 1= Vo o3 ...
7.6, SCratChpad . .. e o4. ...
T T USBISIVICE . o ottt 96. ...

8. INtegration APl ... Q9. ...
8.1. BOOKMArKSEIVICE . . . o 400 ..
8.2. DEEPLINKSEIVICE . . . e 402 ..
8.3 . EmalilService .. ... . o3 ..
8.4. GUICEBEANPIOVIAEL. . . . . o d05. .
8. 5. JaXD S IVICE . . d07. ..
8.6. MEMENIOSEIVICE. . . . .ttt e e e £08 ..
8.7. XMISNapShOtSEIVICE . . . .. e e d10..

9. Metadata APl . . o di5. ..
9.1. ApplicationFeatureRepPOSItOrY . ... o i e 416 .
0.2, LAY OUL S IVICE . .t 7. ..
0.3. MetaMOdeISEIVICE . . . . . 19 ..
0.4, SEIVICEREGISIIY . e e 420 ..
0.5, SWAGOEI S EIVICE . . o ot vttt ettt e A21 ..

10, TEStNG &« .t e d23. ..
10.1. FixtureScriptsDefault ... .. e d23..
10.2. SUAOSEIVICE . . o .t ettt et e e e e e e d24 ..
10.3. FixtureScriptsSpec APTroVIAEr . .. ...ttt ettt e e e d26.

11, Persistence Layer APl ... .. d28..
1L L ISISTUOSUP PO T o ottt e 428 ..
11.2. QueryResUItSCaChe. . . . .. e d33..
11,3, REPOSIONY S VICE . . o e e d36. .

12. Persistence Layer SPI ... ... e d41..
12, L. AUdItINGSEIVICE . .o e d42. .
12.2. EVentSerializer . ... da4 . .
12.3. PUBIShiNgSerVICe ... e e d46. .
12.4. UserRegistrationServiCe . .. .. e e dbhl. .

13, BoOtsStrapping SP I ... e e A54 ..

13.1. ClasSDiSCOVEIYSEIVICE . . vttt et e e e e e e e e d54. .



Chapter 1. Domain Services

This guide documents Apache Isis' domain services, both those that act as an API (implemented by
the framework for your domain objects to call), and those domain services that act as an SPI
(implemented by your domain application and which are called by the framework).

1.1. Other Guides

Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures” guides.

The user guides available are:

¥ Fundamentals

¥ Wicket viewer

¥ Restful Objects viewer
¥ Security

¥ Testing

¥ Beyond the Basics
The reference guides are:

¥ Annotations

¥ Domain Services (this guide)
¥ Configuration Properties

¥ Classes, Methods and Schema

¥ Apache Isis Maven plugin
The remaining guides are:

¥ Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

¥ Committers’ Guide (release procedures and related practices)


ugfun.pdf
ugvw.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
dg.pdf
cgcom.pdf

Chapter 2. Introduction

2.1. Types of Domain Service

The domain services also group into various broad categories. Many support functionality of the
various layers of the system (presentation layer, application layer, core domain, persistence layer);
others exist to allow the domain objects to integrate with other bounded contexts, or provide
various metadata (eg for development-time tooling). The diagram below shows these categories:

Called by domain objects

Integration Metadata Testing

API API

Persistence
Layer
API

Application
Layer
API

Core/Domain
API

Persistence
Layer
SPI

Presentation Application
Layer Layer
SPI SPI

Bootstrapping SPI

Called by framework

A small number of domain services can be considered both APl and SPI; a good example is the
EmailService that is of direct use for domain objects wishing to send out emails, but is also used by

the framework to support the  user registration functionality supported by the  Wicket viewer . The
same is true of the EventBusService; this can be used by domain objects to broadcast arbitrary
events, but is also used by the framework to automatically emit events for @Action#tdomainEvent()
etc.

For these hybrid services we have categorized the service as an "API" service. This chapter
therefore contains only the strictly SPI services.

This rest of this guide is broken out into several chapters, one for each of the various
types/categories of domain service.


images/reference-services/categories.png
ugvw.pdf#_ugvw_features_user-registration
ugvw.pdf
rgant.pdf#_rgant-Action_domainEvent

2.2. Public API

The vast majority of Apache Isis' domain services are defined in Apache Isis' applib
(o.a.i.core:isis-core-applib module) as stable, public classes. Importantly, this also minimizes the
coupling between your code and Apache Isis, allowing you to easily mock out these services in your
unit tests.

2.3. Using the services

Apache Isis includes an extensive number of domain services for your domain objects to use;
simply define the service as an annotated field and Apache Isis will inject the service into your
object.

For example:

public class Customer{

E public void sendEmail String subject, String body) {

E List <String > cc = Collections . emptyList;

E List <String > bcc = Collections . emptyList;

E emailService . send getEmailAddress(), cc, bcc, subject, body);
E }

E public boolean hideSendEmai() {

E return !emailService . isConfigured ();

E }

E @Inject !
E EmailService emailService ;

}

I Service automatically injected by the framework.

For objects that are already persisted, the service is automatically injected just after the object is
rehydrated by JDO/DataNucleus.

For transient objects (instantiated programmatically), the FactoryService 's instantiate() = method
(or the deprecated DomainObjectContainers newTransientinstance() method) will automatically inject
the services.

Alternatively the object can be instantiated simply using new then services injected using
ServiceRegistry 's injectServicesInto( E) method (or the deprecated DomainObjectContainers
injectServicesInto(  E ) method).

2.4. Overriding the services

The framework provides default implementations for many of the domain services. This is
convenient, but sometimes you will want to replace the default implementation with your own
service implementation.



The trick is to use the @DomainServiceLayout#menuOrder(attribute, specifying a low number
(typically "1").

For a small number of domain services, all implementations are used (following
! the chain-of-responsibility pattern), not just the first one. The services in

guestion are: ContentMappingService GridSystemService, and RoutingService .

For example, suppose you wanted to provide your own implementation of LocaleProvider . HereOs
how:

@DomainServide

E nature = NatureOfService. DOMAIN

)

@DomainServiceLayo(t

E menuOrder= "1" !
)

public class MyLocaleProvider implements LocaleProvider {
E @Override

E public Locale getLocale() {

E return

E }

}

I takes precedence over the default implementation.

ItOs also quite common to want to decorate the existing implementation (ie have your own
implementation delegate to the default); this is also possible and quite easy (if using 1.10.0 or later).
The idea is to have the framework inject all implementations of the service, and then to delegate to

the first one that isnOt "this" one:


rgant.pdf#_rgant-DomainServiceLayout_menuOrder

@DomainServidaature =NatureOfService. DOMA)N
@DomainServiceLayo(t

List <LocaleProvider > localeProviders ;

E menuOrder= "1"

!

)

public class MyLocaleProvider implements LocaleProvider {
E @Override

E public Locale getLocale() {

E return getDelegatelLocaleProvider (). getLocale ();

E }

E private LocaleProvider getDelegateLocaleProvider () {
E return Iterables .tryFind (localeProviders , input -> input != this ). orNull ();
#

E }

E @Inject

E

$

}

I takes precedence over the default implementation when injected elsewhere.

this implementation merely delegates to the default implementation
# find the first implementation that isnOt  this implementation (else infinite loop!)
$ injects all implementations, including this implemenation

The above code could be improved by caching the delegateLocaleProvider once located (rather than
searching each time).



Chapter 3. Presentation Layer SPI

Domain service SPIs for the presentation layer influence how the Apache Isis viewers behave.

The table below summarizes the presentation layer SPIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or

provided by one of the in (non-ASF)

Isis Addons modules.

Table 1. Presentation Layer SPI

SPI

o.a.i.applb.
services.conmap

ContentMappingService

o.a.i.applib.
services.userreg

EmailNotificationServi
ce

o.a.i.applib.
services.error
ErrorReportingService

Description

(Attempt to) map the returned data into the
representation required by the clientOs HTTP
Accept header.

Notify a user during self-registration of users.

Record details of an error occurring in the
system (eg in an external incident recording
system such as JIRA), and return a more friendly
(jargon-free) message to display to the end user,
with optional reference (eg ~ XXX-123)

Implemen
tation

EmailNotif
icationSer

vice-
Default
o.a.i.core
isis-core-
runtime

(none)

Notes

Replaces
(and
simplifies)
the earlier
ContentMap
pingServic
e that
defined an
SPI using
classes
internal to
the
framework
+ No
default
implement
ation.

depends
on:
a

configured
EmailServi
ce


http://www.isisaddons.org

SPI

o.a.i.applib.
services.exceprecog
ExceptionRecognizer2

o.a.i.applib.
services.grid
GridSystemService

o.a.i.applib.
services.grid
GridLoaderService

o.a.i.applib.
services.grid
GridService

o.a.i.applib.
services.hint
HintStore

o.a.i.applib.
services.il8n
LocaleProvider

Description

Convert certain exceptions (eg foreign or unique
key violation in the database) into a format that
can be rendered to the end-user.

Validates and normalizes the grid layout for a
domain class (with respect to a particular grid
system such as Bootstrap3), also providing a
default grid (for those domain classes where

there is no grid layout).

Responsible for loading a grid layout for a
domain class, eg from a layout.xml file.

A facade on top of both GridLoaderService and
GridSystemService, thus being able to return
normalized grids for any domain class.

Stores Ul hints on a per-object basis. For
example, the viewer remembers which tabs are
selected, and for collections which view is
selected (eg table or hidden), which page of a
table to render, or whether "show all" (rows) is
toggled.

Request-scoped service to return the locale of
the current user, in support of i18n (ie so that
the appOs Ul, messages and exceptions can be
translated to the required locale by the
TranslationService

Implemen
tation

ExceptionR
ecognizer-
CompositeF
or-
JdoObjectS
tore
o.a.i.core
isis-core-
applib
GridSystem
ServiceBS3
o.a.i.core
isis-core-
metamodel

GridLoader
ServiceDef

ault
o.a.i.core
isis-core-
metamodel
GridServic
eDefault
o.a.i.core
isis-core-
metamodel

HintStoreU
singWicket
Session
o.a.i.view
er

isis-
viewer-
wicket-
impl
LocaleProv
iderWicket
o.a.i.view
er

isis-
viewer-

wicket-
impl

Notes

Extensible
using
composite
pattern if
required



SPI

o.a.i.applib.
services.routing
RoutingService

o.a.i.applib.
services.il8n
TranslationService

o.a.i.applib.
services.il18n
TranslationsResolver

o.a.i.applib.
services.urlencoding
UrlEncodingService

o.a.i.applib.
services.userprof
UserProfileService

Key:

Description

Return an alternative object than that returned
by an action.

Translate an appOs Ul, messages and exceptions
for the current user (as per the locale provided
by LocalProvider .

Obtain translations for a particuar phrase and
locale, in support of i18n (ie so that the appOs UlI,
messages and exceptions can be translated to
the required locale by the  TranslationService

Converts strings into a form safe for use within a
URL. Used to convert view models mementos
into usable URL form.

Obtain an alternative (usually
enriched/customized) name for the current user,
to render in the UL.

Implemen
tation

RoutingSer
viceDefaul

t
o.a.i.core
isis-core-
applib

Translatio
nServicePo
o.a.i.core
isis-core-
runtime

Translatio
nsResolver

Wicket
o.a.i.view
er

isis-
viewer-
wicket-
impl
UrlEncodin
gService

UsingBaseE

ncoding
o.a.i.appl
ib
isis-core-
applib

Notes

The default
implement
ation will
return the
home page

(per
HomePagePr

oviderServ
ice)ifa
void or
null is
returned.
Used by
the Wicket
viewer
only.

related

services:
Translatio
nServicePo

Menu
depends
on:
Translatio
nsResolver,

LocaleProv
ider


ugvw.pdf
ugvw.pdf

¥ 0.a.i is an abbreviation for org.apache.isis

¥ o.ia.m is an abbreviation for  org.isisaddons.module

There are also a number of presentation layer SPIs that use internal classes. These can be found in
the next chapter .

3.1. ContentMappingService

The ContentMappingService supports the (default implementation of the) ContentNegotiationService
allowing the RestfulObjects viewer to allow domain objects to be transformed into some other
format as specified by the HTTP  Accept header.

See ContentNegotiationService for further discussion.

Unlike most other domain services, the framework (that s,
ContentNegotiationService ) will check all available implementations of
ContentMappingService to convert the domain object to the requested media type,

| rather than merely the first implementation found; in other words it uses the
chain-of-responsibility pattern. Services are checked in the ordering defined by
@DomainServiceLayout#menuOrde)()The mapped object used will be the first non-
null result returned by an implementation.

3.1.1. SPI
The SPI defined by this service is:
public interface ContentMappingService {

Object majpObject object , !
List <MediaType acceptableMediaTypes; "

=~ m m

I typically the input is a domain object (whose structure might change over time), and the output
is a DTO (whose structure is guaranteed to be preserved over time)

as per the callerOs HTTP Accept header

In versions prior to  v1.12.0, this interface resided in a different package, internal to the Restful
Objects viewer, and defined a slightly different signature that used an internal enum:

public interface ContentMappingService {

E Object mapObject object,
E List <MediaType acceptableMediaTypes
E RepresentationType representationType ); !
}
I enum representing the requested representation; only ever take a value of DOMAIN_OBJEET

ACTION_RESULT


ugvro.pdf
rgant.pdf#_rgant_DomainServiceLayout_menuOrder

3.1.2. Implementations
No default implementations are provided by Apache Isis framework itself.

However, the (non-ASF) Isis addons' todoapp includes a sample implementation to convert its
ToDoltementity into a (JAXB annotated) ToDoltemDto The source code is:

@DomainServidaature = NatureOfService. DOMA)N
public class ContentMappingServiceForToDoltemimplements ContentMappingService {

E @Override

E public Object mag

E final Object object ,

E final List <MediaType acceptableMediaTypeg {

E if (object instanceof ToDoltem {

E for (MediaTypeacceptableMediaType : acceptableMediaTypeg {
E final MapgsString , String > parameters = acceptableMediaType
. getParameters();

E final String className= parameters. get("x-ro-domain-type" );
E if (classNameeqgausl(ToDoltemV1 Iclass . getNam@)) {

E return newToDoltemV1((AToDoltem object);

E }

E }

E }

E return null ;

E }

E private ToDoltemV1_InewToDoltemV1(final ToDoltemtoDoltem) {

E final ToDoltemV1 1dto = new ToDoltemV1 (};

E dto. setToDolten{ toDoltem);

E dto. setDescription (toDoltem. getDescription ());

E

E return dto;

E }

E

}

3.1.3. Related Services

This service is a companion to the default implementation of the ContentNegotiationService .

3.2. EmailNotificationService

The EmailNotificationService  supports the user registration (self sign-up) features of the Wicket
viewer whereby a user can sign-up to access an application by providing a valid email address.

The Wicket viewer will check whether an implementation of this service (and also the
UserRegistrationService ) is available, and if so will (unless configured not to) expose a sign-up page
where the user enters their email address. A verification email is sent using this service; the email
includes a link back to the running application. The user then completes the registration process
(choosing a user name, password and so on) and the Wicket viewer creates an account for them

10


http://github.com/isisaddons/isis-app-todoapp
ugvw.pdf#_ugvw_features_user-registration
ugvw.pdf
ugvw.pdf

(using the aforementioned  UserRegistrationService ).

The role of this service in all of this is to format and send out emails for the initial registration, or
for password resets.

The default implementation of this service uses the EmailService, which must be configured in
order for user registration to be enabled.

3.2.1. SPI

The SPI defined by this service is:

public interface EmailNotificationService  extends Serializable {
@Programmatic

boolean send EmailRegistrationEvent ev); !
@Programmatic

boolean send PasswordResetEventev);
@Programmatic

boolean isConfigured (); #

=~ > [T T> [T 1> TP

I sends an email to verify an email address as part of the initial user registration
" sends an email to reset a password for an already-registered user

# determines whether the implementation was configured and initialized correctly

If isConfigured() returns false then it is not valid to call send(E ) (and doing so will result in an
lllegalStateException  being thrown.

3.2.2. Implementation

The framework provides a default implementation,
o.a.i.core.runtime.services.userreg.EmailNotificationServiceDefault that constructs the emails to
send.

Alternative Implementations

The text of these email templates is hard-coded as resources, in other words baked into the core jar
files. If you need to use different text then you can of course always write and register your own
implementation to be used instead of Isis' default.

If you have configured an alternative email service implementation, it should process the message
body as HTML.

If you wish to write an alternative implementation of this service, note that (unlike most Apache

Isis domain services) the implementation is also instantiated and injected by Google Guice. This is
because EmailNotificationService  is used as part of the user registration functionality and is used
by Wicket pages that are accessed outside of the usual Apache Isis runtime.

This implies a couple of additional constraints:

11


ugvw.pdf#_ugvw_features_user-registration

¥ first, implementation class should also be annotated with @com.google.inject.Singleton
¥ second, there may not be any Apache Isis session running. (If necessary, one can be created on

the fly using IsisContext.dolnSession( E))

To ensure that your alternative implementation takes the place of the default implementation,
register it explicitly in isis.properties

3.2.3. Registering the Service

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ) then Apache Isis' default implementation of
EmailNotificationService  service is automatically registered and injected (it is annotated with
@DomainServigeso no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.2.4. Related Services

As noted elsewhere, the default implementation of this service uses EmailService. This service has
no specific configuration properties but does require that the EmailService has been configured.
Conversely, this service is used by (Isis' default implementation of) UserRegistrationService .

3.3. ErrorReportingService

The ErrorReportingService service is an optional SPI that providies the ability to record any
errors/exceptions that might occur in the application into an external incident recording system

(such as JIRA). The service also allows a user-friendly (jargon-free) error message to be returned
and rendered to the end-user, along with an optional incident reference (eg a JIRA issue XXX-123%

3.3.1. SPI

The SPI defined by this service is:

public interface ErrorReportingService {
E Ticket reportError (ErrorDetails errorDetails );

}

where ErrorDetails provided to the service is:

12


rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

public class ErrorDetails {

public String getMainMessag { ... } !
public boolean isRecognized() { ... } !
public boolean isAuthorizationCause () { ... } #

public List <String > getStackTraceDetailList () { $

=~ > [T > [Tp

I the main message to be displayed to the end-user. The service is responsible for translating this
into the language of the end-user (it can use  LocaleProvider if required).

whether this message has already been recognized by an ExceptionRecognizer service. Generally
this converts potentially non-recoverable (fatal) exceptions into recoverable exceptions
(warnings) as well providing an alternative mechanism for generating user-friendly error
messages.

# whether the cause of the exception was due to a lack of privileges. In such cases the Ul restricts
the information shown to the end-user, to avoid leaking potentially sensitive information

$ the stack trace of the exception, including the trace of any exceptions in the causal chain. These
technical details are hidden from the user and only shown for non-recoverable exceptions.

and Ticket (returned by the service) has the constructor:

public class Ticket implements Serializable {
public Ticket (
final String reference , !
final String userMessage :
final String details ) { ... } #

= [T [T [ mp

' is a unique identifier that the end-user can use to track any follow-up from this error. For
example, an implementation might automatically log an issue in a bug tracking system such as
JIRA, in which case the reference would probably be the JIRA issue number <tt>XXX-1234</tt>.

a short, jargon-free message to display to the end-user.

# is optional additional details to show. For example, these might include text on how to recover
from the error, or workarounds, or just further details on contacting the help desk if the issue is
severe and requires immediate attention.

3.3.2. Implementation

The (non-ASF) Isis addons' kitchensink — app provides an example implementation:

13


http://github.com/isisaddons/isis-app-kitchensink

@DomainServide nature = NatureOfService. DOMAIN
public class KitchensinkErrorReportingService implements ErrorReportingService {

E private int ticketNumber = 1;

E @Override

E public Ticket reportError (final ErrorDetails errorDetails ) {

E return new Ticket (

E nextTicketReference (),

E "The Kitchen sink app is sorry to report that: " + errorDetails
. getMainMessagg,

E "These are additional details for the end-user to read.\n"
E + "This content should be able to span many lines.\n"

E + "More detail.\n"

E + "Some suggested work-arounds.\n"

E + "Details of how to contact help desk.\n"

E + "And so on");

E }

E String nextTicketReference () {

E return " + ticketNumber++;

E }

}

which is rendered as:

Kitchensink

A The Kitchen sink app is sorry to report that: A non-recoverable exception has been throv

These are additional details for the end-user to read.
This content should be able to span many lines.
More detail.

Some suggested work-arounds.

Details of how to contact help desk.

Andsoon

Please quote reference: 1

Exception details

3.3.3. Reqistering the Services

There is no default implementation of this service. To register your own implementation (and
assuming that an AppManifest is being used to bootstrap the app ), then just ensure that the
implementation is on the classpath and the module containing the implementation is returned in
AppManifest#getModules().

14


images/reference-services-spi/ErrorReportingService/kitchensink-example.png
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

3.4. ExceptionRecognizer

The ExceptionRecognizer service provides the mechanism for both the domain programmer and
also for components to be able to recognize and handle certain exceptions that may be thrown by
the system. Rather than display an obscure error to the end-user, the application can instead
display a user-friendly message.

For example, the JDO/DataNucleus Objectstore provides a set of recognizers to recognize and
handle SQL constraint exceptions such as uniqueness violations. These can then be rendered back
to the user as expected errors, rather than fatal stacktraces.

It is also possible to provide additional implementations, registered in isis.properties . Unlike
other services, where any service registered in isis.properties replaces any default
implementations, in the case of this service all implementations registered are "consulted" to see if

they recognize an exception (the chain-of-responsibility pattern).

3.4.1. SPI

The SPI defined by this service is:

public interface ExceptionRecognizer2 ... {
E  public enumCategory { !

}

public static class Recognition {
private Category category;
private String reason;

}

@Programmatic
public Recognition recognize2( Throwable ex); #

M M M M M M T T m

@Deprecated
@Programmatic
public String recognize (Throwable ex); $

™ > [mp

—

I an enumeration of varies categories of exceptions that are recognised

represents the fact that an exception has been recognized as has been converted into a user-
friendy message, and has been categorized

# the main API, to attempt to recognize an exception

$ deprecated API which converted exceptions into strings (reasons), ie without any categorization.
This is no longer called.

The categories are:

15



public interface ExceptionRecognizer2 ... {

E public enumCategory {

E CONSTRAINT_VIOLATION !
E NOT_FOUND "
E CONCURRENCY #
E CLIENT_ERROR $
E SERVER_ERROR %
E OTHER &
E

E

}

I aviolation of some declarative constraint (eg uniqueness or referential integrity) was detected.
the object to be acted upon cannot be found (404)

# a concurrency exception, in other words some other user has changed this object.

$ recognized, but for some other reasonE 40x error

% 50x error

& recognized, but uncategorized (typically: a recognizer of the original ExceptionRecognizer API).

In essence, if an exception is recognized then it is also categorized. This lets the viewer act
accordingly. For example, if an exception is raised from the loading of an individual object, then

this is passed by the registered ExceptionRecognizers. If any of these recognize the exception as
representing a not-found exception, then an Apache Isis ObjectNotFoundExceptionis raised. Both the
viewers interprets this correctly (the Wicket viewer as a suitable error page, the Restful Objects
viewer as a 404 status return code).

If the implementation recognizes the exception then it returns a user-friendly message to be
rendered (by the viewer) back to the user; otherwise it returns null . There is no need for the
implementation to check for exception causes; the casual chain is unwrapped by Apache Isis core

and each exception in the chain will also be passed through to the recognizer (from most specific to
least). The recognizer implementation can therefore be as fine-grained or as coarse-grained as it
wishes.

3.4.2. Implementation

The framework provides two default implementations:

¥ o0.a.i.core.metamodel.services.container.DomainObjectContainerDefault provided by Apache Isis
core is itself an ExceptionRecognizer, and will handle ConcurrencyExceptions. It will also handle
any application exceptions raised by the system (subclasses of

o.a.i.applib.RecoverableException ).

¥ 0.a.i.objectstore.jdo.applib.service.exceprecog.ExceptionRecognizerCompositeForJdoObjectSto
re bundles up a number of more fine-grained implementations:

¥ ExceptionRecognizerForSQLIntegrityConstraintViolationUniqueOrindexException
¥ ExceptionRecognizerForJDOObjectNotFoundException

¥ ExceptionRecognizerForJDODataStoreException

16


ugvw.pdf
ugvro.pdf
ugvro.pdf

If you want to recognize and handle additional exceptions (for example to capture error messages
specific to the JDBC driver you might be using), then create a fine-grained implementation of
ExceptionRecognizer2 for the particular error message (there are some convenience
implementations of the interface that you can subclass from if required) and register in
isis.properties

3.4.3. Reqistering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ) then the default implementations provided by the framework
(DomainObjectContainerDefault and  ExceptionRecognizerCompositeForJdoObjectStore)  will  be

registered.

In addition, you can register any further exception recognizers in isis.properties
isis.services =..., \
E com.mycompany.myapp.MyExceptionRecognizer,
E

Prior to 1.9.0, the ExceptionRecognizerCompositeForJdoObjectStore also required
manual registration.

If the JDO exception recognizers are not required (rather unlikely), then they can be disabled en-
masse using the configuration property
isis.services.ExceptionRecognizerCompositeForJdoObjectStore.disable

3.5. GridSystemService

The GridSystemService encapsulates a single layout grid system which can be used to customize the
layout of domain objects. In particular this means being able to return a "normalized" form
(validating and associating domain object members into the various regions of the grid) and in
providing a default grid if there is no other metadata available.

The framework provides a single such grid implementation, namely for Bootstrap3.

Unlike most other domain services, the framework will check all available
implementations of  GridSystemService to obtain available grid systems, rather
than merely the first implementation found; in other words it uses the chain-of-
| responsibility pattern. Services are called in the order defined by
@DomainServiceLayout#menuOrde)()

Note though that each concrete implementation must also provide corresponding
Wicket viewer components capable of interpreting the grid layout.

3.5.1. SPI

The SPI defined by this service is:

17


rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgcfg.pdf#_rgcfg_configuring-core
rgant.pdf#_rgant_DomainServiceLayout_menuOrder

public interface GridSystemService<G extends Grid> {

void minimal(G grid , Class<?> domainClasg;

E Class<? extends Grid> gridimplementation (); !
E String tns(); "
E String schemaLocatior(); #
E Grid defaultGrid (Class<?> domainClass; $
E void normalize (G grid, Class<?> domainClass; %
E void complete(G grid, Class<?> domainClasy: &
E

}

' The concrete subclass of Grid supported by this implementation. As noted in the introduction,
there can be multiple implementations of this service, but there can only be one
implementation per concrete subclass. As is normal practice, the service with the lowest
@DomainServiceLayout#menuOrder@kes precedence.

the target namespace for this grid system. This is used when generating the XML. The
Bootstrap3  grid  system  provided by the framework returns the  value
http://isis.apache.org/applib/layout/grid/bootstrap3

# the schema location for the XSD. The Bootstrap3 grid system provided by the framework
returns the value http://isis.apache.org/applib/layout/grid/bootstrap3/bootstrap3.xsd

$ a default grid, eg two columns in ratio 4:8. Used when no existing grid layout exists for a
domain class.

% Validates and normalizes a grid, modifying the grid so that all of the domain objectOs members
(properties, collections, actions) are bound to regions of the grid. This is done using existing
metadata, most notably that of the @MemberOrdannotation. Such a grid, if persisted as the
layout XML file for the domain class, allows the @MemberOrdannotation to be removed from the
source code of the domain class (but other annotations must be retained).

& Takes a normalized grid and enriches it with additional metadata (taken from Apache Isis’'
internal metadata) that can be represented in the layout XML. Such a grid, if persisted as the

layout XML file for the domain class, allows all layout annotations ( @ActionLayout

@PropertyLayoutand @CollectionLayout) to be removed from the source code of the domain class.

' Takes a normalized grid and strips out removes all members, leaving only the grid structure.
Such a grid, if persisted as the layout XML file for the domain class, requires that the
@MemberOrdannotation is retained in the source code of said class in order to bind members to
the regions of the grid.

3.5.2. Implementation

The framework provides  GridSystemServiceBS3an implementation that encodes the bootstrap3 grid
system. (The framework also provides  Wicket viewer components that are capable of interpreting
and rendering this metadata).

3.5.3. Registering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ), then the  Bootstrap3 default implementation of

18


rgant.pdf#_rgant_DomainServiceLayout_menuOrder
http://isis.apache.org/applib/layout/grid/bootstrap3
http://isis.apache.org/applib/layout/grid/bootstrap3/bootstrap3.xsd
rgant.pdf#_rgant_MemberOrder
rgant.pdf#_rgant_ActionLayout
rgant.pdf#_rgant_PropertyLayout
rgant.pdf#_rgant_CollectionLayout
rgant.pdf#_rgant_MemberOrder
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

GridSystemService is automatically registered and injected, and no further configuration is
required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.5.4. Related Services

This service is used by GridService .

3.6. GridLoaderService

The GridLoaderService provides the ability to load the XML layout (grid) for a domain class.

3.6.1. SPI

The SPI defined by this service is:

public interface GridLoaderService {

E boolean supportsReloading (); !
E void remové Class<?> domainClasg; "
E boolean existsFor (Class<?> domainClasg; #
E Grid load(final Class<?> domainClasy; $
}

' whether dynamic reloading of layouts is enabled. The default implementation enables
reloading for prototyping, disables in production

support metamodel invalidation/rebuilding of spec, eg as called by this Object mixin action.
# whether any persisted layout metadata (ega  .layout.xml file) exists for this domain class.

$ returns a new instance of a  Grid for the specified domain class, eg as loaded from a  layout.xml
file. If none exists, will return null (and the calling GridService will use GridSystemService to
obtain a default grid for the domain class).

3.6.2. Implementation

The framework provides a default implementation of this service, namely
GridLoaderServiceDefault . This implementation loads the grid from its serialized representation as
a .layout.xml file, loaded from the classpath.

For example, the layout for a domain class com.mycompany.myapp.Customaould be loaded from
com/mycompany/myapp/Customer.layout.xml

3.6.3. Reqistering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ), then the default implementation of GridLoaderService is
automatically registered and injected, and no further configuration is required.

19


rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object_rebuildMetamodel
rgcms.pdf#_rgcms_classes_layout_component
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.6.4. Related Services

This service is used by GridService .

3.7. GridService

The GridService provides the ability to load the XML layout (grid) for a domain class. To do this it
delegates:

¥ to GridLoaderService to load a pre-existing layout for the domain class, if possible

¥ to GridSystemService to normalize the grid with respect to Apache Isis' internal metamodel, in
other words to ensure that all of the domain objects' properties, collections and actions are
associated with regions of the grid.

Once a grid has been loaded for a domain class, this is cached internally by Apache Isis' internal
meta model (in the GridFacet facet). If running in prototype mode, any subsequent changes to the
XML will be detected and the grid rebuilt. This allows for dynamic reloading of layouts, providing a

far faster feedback (eg if tweaking the Ul while working with end-users). Dynamic reloading is
disabled in production mode.

3.7.1. SPI

The SPI defined by this service is:

public interface GridService {

E boolean supportsReloading (); !
E void remové Class<?> domainClasg; "
E boolean existsFor (Class<?> domainClasg; #
E Grid load(final Class<?> domainClasy; $
E Grid defaultGridFor (Class<?> domainClasy; %
E Grid normalize (final Grid grid ); &
E Grid complete(Grid grid ); ‘
E  Grid minimal(Grid grid); (
}

I whether dynamic reloading of layouts is enabled. The default implementation enables
reloading for prototyping, disables in production

support metamodel invalidation/rebuilding of spec, eg as called by this Object mixin action.

# whether any persisted layout metadata (eg a  .layout.xml file) exists for this domain class. Just
delegates to corresponding method in  GridLoaderService.

$ returns a new instance of a  Grid for the specified domain class, eg as loaded from a  layout.xml
file. If none exists, will return null (and the calling GridService will use GridSystemService to
obtain a default grid for the domain class).

20


rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object_rebuildMetamodel
rgcms.pdf#_rgcms_classes_layout_component

% returns a default grid, eg two columns in ratio 4:8. Used when no existing grid layout exists for
a domain class.

& validates and normalizes a grid, modifying the grid so that all of the domain objectOs members
(properties, collections, actions) are bound to regions of the grid. This is done using existing
metadata, most notably that of the @MemberOrdannotation. Such a grid, if persisted as the
layout XML file for the domain class, allows the @MemberOrdannotation to be removed from the
source code of the domain class (but other annotations must be retained).

Takes a normalized grid and enriches it with additional metadata (taken from Apache Isis'
internal metadata) that can be represented in the layout XML. Such a grid, if persisted as the
layout XML file for the domain class, allows all layout annotations ( @ActionLayout
@PropertyLayoutand @CollectionLayout) to be removed from the source code of the domain class.

( Takes a normalized grid and strips out removes all members, leaving only the grid structure.
Such a grid, if persisted as the layout XML file for the domain class, requires that the
@MemberOrdannotation is retained in the source code of said class in order to bind members to
the regions of the grid.

The first four methods just delegate to the corresponding methods in GridSystemService, while the
last four delegate to the corresponding method in GridSystemService. The service inspects the
Grid's concrete class to determine which actual ~ GridSystemService instance to delegate to.

3.7.2. Implementation

The framework provides a default implementation of this service, namely GridServiceDefault .

3.7.3. Registering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ), then the default implementation of GridLoaderService is
automatically registered and injected, and no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide). That said, there should be little reason to use a different
implementation; if behaviour does need to be changed, it would also be possible to replace the
implementation of either the  GridLoaderService or the GridSystemService.

3.7.4. Related Services
This service calls GridLoaderService and GridSystemService.

This service is called by LayoutService, exposed in the Ul through LayoutServiceMenu(to download
the layout XML as a zip file for all domain objects) and the downloadLayoutXml() mixin (to download
the layout XML for a single domain object).

3.8. HintStore

The HintStore service defines an SPI for the Wicket viewer to store Ul hints on a per-object basis.
For example, the viewer remembers which tabs are selected, and for collections which view is

21


rgant.pdf#_rgant_MemberOrder
rgant.pdf#_rgant_ActionLayout
rgant.pdf#_rgant_PropertyLayout
rgant.pdf#_rgant_CollectionLayout
rgant.pdf#_rgant_MemberOrder
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object
ugvw.pdf

selected (eg table or hidden), which page of a table to render, or whether "show all* (rows) is
toggled.

The default implementation of this service uses the HTTP session. The service is an SPI because the
amount of data stored could potentially be quite large (for large numbers of users who use the app

all day). An SPI makes it easy to plug in an alternative implementation that is more sophisticated
than the default (eg implementing MRU/LRU queue, or using a NoSQL database, or simply to
disabling the functionality altogether).

3.8.1. SPI

The SPI of HintStore is:

public interface HintStore {

E String get(final Bookmarkbookmark String hintKey); !
E void set(final Bookmarkbookmark String hintKey, String value): !
E void removéfinal Bookmarkbookmark String hintKey); #
E void removeAll(Bookmarkbookmarl; $
E Set<String > findHintKeys (Bookmarkbookmarl; %
}

I obtain a hint (eg which tab to open) for a particular object. Object identity is represented by
Bookmarkas per the BookmarkService so that alternative implementations can easily serialize this
state to a string.

" set the state of a hint. (The value of) all hints are represented as strings.
# remove a single hint for an object;
$ remove all hints

% obtain all known hints for an object

3.8.2. Implementation

The core framework provides a default implementation of  this service
(org.apache.isis.viewer.wicket.viewer.services.HintStoreUsingWicketSession ).

3.8.3. Registering the Service

Assuming that the configuration-and-annotation  services installer is configured (implicit if using

the AppManifest to bootstrap the app ) then Apache Isis' core implementation of HintStore service is
automatically registered and injected (it is annotated with @DomainServige so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(ps explained in the
introduction  to this guide).

3.8.4. Related Services

The Wicket viewer exposes the "clear hints" mixin action that is for use by end-users of the

22


rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object_clearHints

application to clear any Ul hints that have accumulated for a domain object.

3.9. LocaleProvider

The LocaleProvider service is one of the services that work together to implement Apache Isis'
support for i18n, being used by Isis' default implementation of TranslationService .

The role of the service itself is simply to return the Locale of the current user.

! For the "big picture" and further details on Apache Isis' i18n support, see here .

3.9.1. SPI
The SPI defined by this service is:
public interface LocaleProvider {

E @Programmatic
E Locale getlLocale ();

}

This is notionally request-scoped, returning the Locale of the current user; not that of the server.
(Note that the implementation is not required to actually be @RequestScopgedowever).

3.9.2. Implementation

Isis' Wicket viewer provides an implementation of this service (  LocaleProviderWicket ) which
leverages Apache Wicket APIs.

! Currently there is no equivalent implementation for the RestfulObjects viewer .

3.9.3. Registering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ), and that the Wicket viewer is being used, then an
implementation of LocaleProvider is automatically registered and injected (it is annotated with
@DomainServigeso no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.9.4. Related Services

This service works in conjunction with TranslationService and TranslationsResolver in order to
provide i18n support.

23


ugbtb.pdf#_ugbtb_i18n
rgant.pdf#_rgant-RequestScoped
ugvw.pdf
ugvro.pdf
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugvw.pdf
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

3.10. RoutingService

The RoutingService provides the ability to return (and therefore render) an alternative object from
an action invocation.

There are two primary use cases:

¥ if an action returns an aggregate leaf (that is, a child object which has an owning parent), then
the parent object can be returned instead.

For example, an action returning  Orderltem might instead render the owning  Order object. It is
the responsibility of the implementation to figure out what the "owning" object might be.

¥ if an action returns  null oris void, then return some other "useful" object.

For example, return the home page (eg as defined by the @HomePagenotation).

Currently the routing service is used only by the Wicket viewer ; it is ignored by the Restful Objects

viewer.

Unlike most other domain services, the framework will check all available
implementations of  RoutingService to return a route, rather than the first
implementation found; in other words it uses the chain-of-responsibility pattern.
Services are called in the order defined by @DomainServiceLayout#menuOrde)()
The route used will be the result of the first implementation checked that
declares that it can provide a route.

3.10.1. SPI

The SPI defined by this service is:

public interface RoutingService {

E @Programmatic
E boolean canRoutd Object original ); !
E @Programmatic
E Object route (Object original ); "
}
' whether this implementation recognizes and can "route" the object. The route( E ) method is

only called if this method returns  true..

the object to use; this may be the same as the original object, some other object, or (indeed) null .

3.10.2. Implementation

The framework provides a default implementation which will always return the original object
provided, or the home page ifa null or void was provided. It uses the HomePageProviderService

There can be multiple implementations of RoutingService registered. These are checked in turn

24


rgant.pdf#_rgant_HomePage
ugvw.pdf
ugvro.pdf
rgant.pdf#_rgant_DomainServiceLayout_menuOrder

(chain of responsibility pattern), ordered according to @DomainServiceLayout#menuOrder(Jas
explained in the introduction to this guide). The route from the first service that returns true from
its canRoute(E ) method will be used.

3.10.3. Registering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using

the AppManifest to bootstrap the app ) then Apache Isis' default implementation of RoutingService
service is automatically registered and injected (it is annotated with @DomainServigeso no further
configuration is required.

3.10.4. Related Services

The default implementation of ths service uses the HomePageProviderService

3.11. TranslationService

The TranslationService is the cornerstone of Apache Isis' i18n support. Its role is to be able to
provide translated versions of the various elements within the Apache Isis metamodel (service and
object classes, properties, collections, actions, action parameters) and also to translate business rule
(disable/valid) messages, and exceptions. These translations provide for both singular and plural
forms.

! For the "big picture” and further details on Apache Isis' i18n support, see here.

3.11.1. SPI

The SPI defined by this service is:

public interface TranslationService {

E @Programmatic

E String translate (String context, String text); !
E @Programmatic

E String translate (String context, "
E String singularText |,

E String pluralText , int nuny;

E enumMode{ READ WRITE

E  @Programmatic

E ModegetModg); #
}

I translate the text, in the locale of the "current user".

return a translation of either the singular or the plural text, dependent on the numparameter, in
the locale of the "current user"”

# whether this implementation is operating in read or in write mode.

25


rgant.pdf#_rgant_DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_i18n

If in read mode, then the translations are expected to be present.

If in write mode, then the implementation is saving translation keys, and will always return the
untranslated translation.

3.11.2. Implementation

The Apache Isis framework provides a default implementation ( TranslationServicePo ) that uses the
GNU .pot and .po files for translations. It relies on the LocaleProvider service (to return the Locale
of the current user) and also the  TranslationsResolver service (to read existing translations).

The framework also provides a supporting TranslationServicePoMenu provides menu items under
the "Prototyping" secondary menu for controlling this service and downloading .pot files for
translation.

For more details on the implementation, see  i18n support .

3.11.3. Registering the Services

Assuming that the configuration-and-annotation  services installer is configured (implicit if using
the AppManifest to bootstrap the app ) then Apache Isis' core implementation of  TranslationService
service (along with the supporting menu service) are automatically registered and injected (it is
annotated with @DomainServigeso no further configuration is required.

If the menu items are not required then these can be suppressed either using security or by
implementing a vetoing subscriber

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.11.4. Related Menus

The TranslationServicePoMenu menu exposes the TranslationServicePo serviceOstoPot() method so
that all translations can be downloaded as a single file.

3.11.5. Related Services

This service works in conjunction with LocaleProvider and TranslationsResolver in order to provide
i18n support.

3.12. TranslationsResolver

The TranslationsResolver service is one of the services that work together to implement Apache Isis'
support for i18n, being used by Isis' default implementation of TranslationService

The role of the service itself is locate and return translations.

! For the "big picture" and further details on Apache Isis' i18n support, see here .

26


ugbtb.pdf#_ugbtb_i18n
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugbtb.pdf#_ugbtb_i18n

3.12.1. SPI

The SPI defined by this service is:

public interface TranslationsResolver {
E @Programmatic
E List <String > readLines(final String file );

}

3.12.2. Implementation

Isis' Wicket viewer provides an implementation of this service (  TranslationsResolverWicket ) which
leverages Apache Wicket APIs. This searches for translation files in the standard WEB-INFHirectory.

! Currently there is no equivalent implementation for the RestfulObjects viewer .

3.12.3. Registering the Service

Assuming that the <code>configuration-and-annotation</code> services installer is configured
(implicit if using the <code>AppManifest</code> to <a
href="rgcms.pdf#<em>rgcms_classes_AppManifest-bootstrapping">bootstrap the app</a>),
_and</em> that the <a href="ugvw.pdf">Wicket viewer</a> is being used, then an implementation

of <code>TranslationsResolver</code> is automatically registered and injected (it is annotated with
<code>@DomainService</code>) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.12.4. Related Services

This service works in conjunction with LocaleProvider and TranslationService in order to provide
i18n support.

3.13. UrlEncodingService

The UrlEncodingService defines a consistent way to convert strings to/from a form safe for use
within a URL. The service is used by the framework to map view model mementos (derived from
the state of the view model itself) into a form that can be used as a view model. When the
framework needs to recreate the view model (for example to invoke an action on it), this URL is
converted back into a view model memento, from which the view model can then be hydrated.

Defining this functionality as an SPI has two use cases:

¥ first, (though some browsers support longer strings), there is a limit of 2083 characters for URLs.
For view model mementos that correspond to large strings (as might occur when serializing a
JAXB @XmlIRootElemesainnotated view model), the service provides a hook.

For example, each memento string could be mapped to a GUID held in some cluster-aware

27


ugvw.pdf
ugvro.pdf
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugbtb.pdf#_ugbtb_view-models
rgant.pdf#_rgant-XmlRootElement

cache.

¥ the service provides the ability, to encrypt the string in order to avoid leakage of potentially
sensitive state within the URL.

The framework provides a default implementation of this service,
UrlEncodingServiceUsingBaseEncoding(also in the applib) that uses base-64 encoding to UTF-8charset.

3.13.1. SPI

The SPI defined by the service is:

public interface UrlEncodingService {
@Programmatic

public String encoddfinal String str); !
@Programmatic

public String decodd String str ); !

=~ [T [T > [mp

I convert the string (eg view model memento) into a string safe for use within an URL

unconvert the string from its URL form into its original form URL

3.13.2. Implementation

The framework provides a default implementation ( UrlEncodingServiceUsingBaseEncoding that
simply converts the string using base-64 encoding and UTF-8 character set. As already noted, be
aware that the maximum length of a URL should not exceed 2083 characters. For large view
models, thereOs the possibility that this limit could be exceeded; in such cases register an alternative
implementation of this service.

To use an alternative implementation, use @DomainServiceLayout#menuOrder(as explained in the
introduction  to this guide).

3.14. UserProfileService

The UserProfileService provides the ability for the domain application to return supplementary
metadata about the current user. This information is used (by the Wicket viewer ) to customize the
appearance of the tertiary "Me" menu bar (top right). For example, rather than display the
username, instead the userQs first and last name could be displayed.

Another use case is to allow the user to switch context in some fashion or other. This might be to
emulate a sort of "sudo"-like function, or perhaps to focus on some particular set of data.

3.14.1. SPI

The SPI defined by the service is:

28


rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugvw.pdf

public interface UserProfileService {
E @Programmatic
E String userProfileName(); !

}

I is used (in the Wicket viewer) as the menu name of the tertiary "Me" menu bar.

If the method returns  null or throws an exception then the framework will default to using the
current user name.

In the future this APl may be expanded; one obvious possibility is to return a profile photo or
avatar URL.

3.14.2. Implementation

There is no default implementation of this service provided by the core Apache Isis framework.

An example implementation can be found in the (non-ASF) Isis addons' todoapp :
“oEE
/. Dashboard x \_,
€« C' [ localhost:8080/wicket/wicket/page?3 el o» =
ToDoApp ToDos~ Analysis ~ Prototyping ~ & Hisven!~
@ Logout
¢ Dashboard
Category %  NotYet Complete ¥  Complete s
& Professional OpenSource: 0, Consulting: 0, Education: 0, Marketing: 0 OpenSource: 0, Consulting: 0, Education: 0, Marketing: 0
9 Daomestic Shopping: 0, Housework: O, Garden: 0, Chores: 0 Shopping: 0, Housework: 0, Garden: 0, Chores: 0
& Other Other: 0 Other: 0
Date Range ¥ Count s
(=2 OverDue 0
5§ Today 0
[ Tomorrow 0
[3 ThisWeek 0
= Later 0
[ Unknown 0

Currently this feature is not integrated with Apache Isis' authentication
I mechanisms; the information provided is purely metadata provided for
presentation purposes only.

29


http://github.com/isisaddons/isis-app-todoapp
images/reference-services-spi/UserProfileService/todoapp.png

Chapter 4. Presentation Layer internal SPI

Domain service SPIs for the presentation layer influence how the Apache Isis viewers behave. In
addition to those defined in the applib, the framework also defines a small number of services that
use classes that are internal to the framework.

" We do not guarantee that semantic versioning will be honoured for these ASPIs.

The table below summarizes the presentation layer non-public SPIs defined by Apache lIsis. It also
lists their corresponding implementation, either a default implementation provided by Apache Isis
itself, or provided by one of the in (non-ASF) Isis Addons modules.

Table 2. "Internal" SPI Services

SPI Maven Module Implementation Notes
ImplOn (g: a))
o.a.i.v.ro. Encodes the algorithm that ContentNegotiation
rendering.service.conneg. delegates to any registered Service-
ContentNegotiationService ContentMappingServices. XRoDomainType
o.a.i.core

isis-core-viewer-
restfulobjects-

rendering
0.a.i.v.ro. Generates the RepresentationServ
rendering.service. representations, delegating ice-
RepresentationService to any registered ForRestfulObjects

ContentNegotiationService s. 0.a.l.core
isis-core-viewer-
restfulobjects-
rendering

Key:

¥ o.a.i.v.ro is an abbreviation for org.apache.isis.viewer.restfulobjects

4.1. ContentNegotiationService

The ContentNegotiationService is a plug-in point for the  RestfulObjects viewer so that it can
generate representations according to HTTP  Accept header of the request. This idea is discussed in
section 34.1 of the Restful Objects spec v1.0.

The principal motivation is to allow more flexible representations to be generated for REST clients
that (perhaps through their use of a certain Javascript library, say) expect, or at least works best
with, a certain style of representation.

Another use case is to support "third party" REST clients over which you have no control. In this
scenario you must not naively expose entities through the RO viewer, because over time those
entities will inevitably evolve and change their structure. If the entities were exposed directly then
those REST clients will break.

30


http://semver.org
http://www.isisaddons.org
ugvro.pdf
http://restfulobjects.org

Instead you need to create some sort of stable facade over your domain entities, one which you will
preserve even if the domain entities change. There are three ways in which you can do this:

¥ first is to solve the problem at the domain layer by defining a regular Apache Isis view model .
This is then surfaced over the RO viewer.

If the underlying entities change, then care must be taken to ensure that structure of the view
model nevertheless is unchanged.

¥ a second option is to solve the problem at the persistence layer, but defining a (SQL) view in the
database and then mapping this to a (read-only) entity. Again this is surfaced by the RO viewer.

If the underlying tables change (as the result of a change in their corresponding domain
entities) then once more the view must be refactored so that it still presents the same structure.

¥ our third option is to solve the problem at the presentation layer, using the
ContentNegotiationService described in this section.

The ContentNegotiationService is responsible for inspecting the HTTP  Accept header, and use
this to select the correct representation to render.

The Apache Isis framework provides a default implementation of ContentNegotiationService
which inspects the "x-ro-domaintype"” component of the HTTP Accept header. If present, this
implementation will delegate to the companion ContentMappingService service, if configured.

A typical implementation of  ContentMappingService will convert the domain object into some
sort of DTO (data transfer object) as specified by the "x-ro-domaintype”. If this DTO is annotated

with JAXB or Jackson mappings, then the RO viewer (courtesy of the underlying RestEasy
framework) can serialize these directly

What all that means is that, if the underlying entities change, we are required to update the
mappings in the ContentMappingServiceto map to the same DTOs.

This diagram illustrates the three options available:

viewer domain persistence

Content Content
Negotiation Mapping View model SQL view
Service Service

4.1.1. SPI

The SPI defined by this service is:

31


ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_other-techniques_mapping-rdbms-views
http://resteasy.jboss.org/
images/reference-services-spi/ContentNegotiationService/facade-choices.png

public interface ContentNegotiationService {

F  @Programmatic

ResponseResponseBuilder buildResponse( !
RepresentationService . Context2 renderContext2,
ObjectAdapter objectAdapter );

@Programmatic

ResponseResponseBuilder buildResponse( !
RepresentationService . Context2 renderContext2,
ObjectAndProperty objectAndProperty );

@Programmatic

ResponseResponseBuilder buildResponse( #
RepresentationService . Context2 renderContext2,
ObjectAndCollection objectAndCollection );

@Programmatic

ResponseResponseBuilder buildResponse( $
RepresentationService . Context2 renderContext2,
ObjectAndAction objectAndAction );

@Programmatic

ResponseResponseBuilder buildResponse( %
RepresentationService . Context2 renderContext2,
ObjectAndActioninvocation objectAndActioninvocation );

~ [T M M M M [ T T T T T T T M e e e mb m

I representation of a single object, as per section 14.4 of the RO spec, v1.0

representation of a single property of an object, as per section 16.4 of the RO spec v1.0

# representation of a single collection of an object, as per section 17.5 of the RO spec v1.0

$ representation of a single action (prompt) of an object, as per section 18.2 of the RO spec v1.0

% representation of the results of a single action invocation, as per section 19.5 of the RO spec v1.0
These methods provide:

¥ a RepresentationService.Context2 which provides access to request-specific context (eg HTTP
headers), session-specific context (eg authentication) and global context (eg configuration
settings)

¥ an object representing the information to be rendered

eg ObjectAdapter, ObjectAndProperty, ObjectAndCollection etc

In all cases, returning null will result in the regular RO spec representation being returned.

This is an "internal” SPI, meaning that it uses types that are not part of the Isis
applib. We do not guarantee that semantic versioning will be honoured for these
APls.

4.1.2. Implementation

ContentNegotiationServiceAbstract (in o.a.i.v.ro.rendering.service.conneg ) provides a no-op

32


http://semver.org

implementation of the SPI, along with supporting methods:

public abstract class ContentNegotiationServiceAbstract implements
ContentNegotiationService {

protected Object objectOf (final ObjectAdapter objectAdapter) { ... }
E protected Object returnedObjectOf (ObjectAndActioninvocation

b TP [T1

objectAndActioninvocation ) { ... }

E protected Class<?> loadClass(String cls) { ... }

E protected void ensureJaxbAnnotated Class<?>domainTypg { ... }

E protected void ensureDomainObjectAssignabld

E String  xRoDomainTypeClass<?> domainType Object domainObjec) { ... }
}

As discussed in the introduction, the framework also provides a default implementation,
o.a.i.v.ro.rendering.service.conneg.ContentNegotiationServiceXRoDomainType . This handles
content negotiation for two of the possible representations, object representations and for action

result representations:

¥ For object representations it will handle requests with HTTP Accept headers of the form:
¥ application/json;profile=urn:org.restfulobjects:repr-types/object;x-ro-domain-type= E
¥ application/xml;profile=urn:org.restfulobjects:repr-types/object;x-ro-domain-type= E
¥ for action result representations it will similarly handle requests with HTTP Accept headers of
the form:

¥ application/json;profile=urn:org.restfulobjects:repr-types/action-result;x-ro-domain-
type=E

y application/xml;profile=urn:org.restfulobjects:repr-types/action-result;x-ro-domain-
type=E

The value of the x-ro-domain-type parameter corresponds to the DTO to be mapped into by the
ContentMappingService

If the DTO is annotated with JAXB, then also note that the runtime type must be annotated with the
JAXB javax.xml.bind.annotation.XmlRootElement  so that RestEasy is able to unambiguously serialize
it.

4.1.3. Usage

You can find an example of all these services in the (non-ASF) Isis addons' todoapp . This defines a
ToDoltemDtcclass that is JAXB annotated (it is in fact generated from an XSD).

The example app also includes an implementation of ContentMappingService that maps
todoapp.dom.module.todoitem.ToDoltementities to todoapp.dto.module.todoitem.ToDoltemDto classes.

A REST client can therefore request a DTO representation of an entity by invoking

33


http://github.com/isisaddons/isis-app-todoapp

http://localhost:8080/restful/objects/TODO/0

with an Accept header of:

application/xml;profile=urn:org.restfulobjects:repr-types/object;x-ro-domain-
type=todoapp.dto.module.todoitem.ToDoltemDto

will result in an XML serialization of that class:

while similarly hitting the same URL with an Accept header of:

application/json;profile=urn:org.restfulobjects:repr-types/object;x-ro-domain-
type=todoapp.dto.module.todoitem.ToDoltemDto

will result in the JSON serialization of that class:

34



