Classes, Methods and Schema

Table of Contents

1. Classes, Methods and Schema d. ...
1.1, Other GUIAES . . . e e d.....
2. M thOdS .. 2.....
2.1. Supporting Method Prefixes 2 ...
2.2. Reserved Methods 21. ..
2.3. Lifecycle Methods 28 ...
3. Classes and Interfaces 82...
3.1. AppManifest (DoOtStrapping) oot 82 ..
3.2, SUPEICIASSES . . . ottt 88 ...
3.3. Domain EVent ClIasSesSot 41, ..
B4 ULEVENE ClasSSes . . v ottt et e e e e e A7 ...
3.5, LifecyCle EVENtS al. ..
3.6 ValUE TYPES . ottt 66. . ..
3.7. Applib Utility Classesttt 59. ..
3.8. Specification pattern 63. ..
3.0 L8N SUPPOIt et ©65. ...
3.10. CoNtrbULEE . .. 65 ...
B L ROIES . .. 66. ...
B L2 MIXINS oo 68. ...
3. A3, LAY OUL . . gl. ...
A SCNBMa . . g4
4.1, ComMMANG ga. ...
4.2, Interaction EXECULIONo o 7. ..
4.3, CANgES. . . o ot 81....
4.4, Action Invocation MemMENtO oo 83 ..

4.5. COMMON SCNEMA . . o o ot e et e e e e e e 86. ..

Chapter 1. Classes, Methods and Schema

This reference guide lists and describes various elements of the the Apache Isis Programming
Model, specifically reserved and prefix methods (such as title() and validate E ()) and various
utility and supporting classes.

It also describes the XSD schema defined by Apache Isis. One use case is for the JAXB serialization
of view models.

1.1. Other Guides

Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures” guides.

The user guides available are:

¥ Fundamentals

¥ Wicket viewer

¥ Restful Objects viewer

¥ DataNucleus object store
¥ Security

¥ Testing

¥ Beyond the Basics
The reference guides are:

¥ Annotations

¥ Domain Services

¥ Configuration Properties

¥ Classes, Methods and Schema (this guide)
¥ Apache Isis Maven plugin

¥ Framework Internal Services
The remaining guides are:

¥ Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

¥ Committers’ Guide (release procedures and related practices)

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. Methods

The Apache Isis metamodel is built up from declaratively (ie, annotations) and imperatively, from
"supporting” methods and other reserved methods.

This chapter documents the supporting methods and the reserved methods. It also documents
(separately) the reserved methods that act as callback hooks into the persistence lifecycle of domain
entities.

2.1. Supporting Method Prefixes

Supporting methods are those that are associated with properties, collections and actions,
providing additional imperative business rule checking and behaviour to be performed when the
user interacts with those object members.

This association is performed by name matching. Thus, a property called "firstName", derived from

a method getFirstName() may have supporting methods hideFirstName() , disableFirstName() and
validateFirstName() . Supporting methods are, therefore, each characterized by their own
particular prefix.

Using name matching to associate supporting methods generally works very well,
but of course if an object memberOs method is renamed, thereOs always the risk
that the developer forgets to rename the supporting method; the supporting
methods become "orphaned".

Apache Isis checks for this automatically, and will fail-fast (fail to boot) if any
orphaned methods are located. A suitable error message is logged so that the
issue can be easily diagnosed.

The table below lists the method prefixes that are recognized as part of Apache Isis' default
programming model.

Table 1. Recognized Method Prefixes

Prefix Object Proper Collecti Action Action Description
ty on Param
addTd () Y add object to a collection
[NOTE] ==== Directly mutable

collections are not currently
supported by the Wicket viewer .
==== See alsoremoveFroif () °

autoCompleteE () Y Y Return a list of matching elements
for a property or an action
parameter.
Alternatively, can specify for a
class using @DomainObject
#autoCompleteRepository
See also choicesE ()

rgant.pdf#_rgant
ugvw.pdf
rgant.pdf#_rgant-DomainObject_autoCompleteRepository
rgant.pdf#_rgant-DomainObject_autoCompleteRepository
rgant.pdf#_rgant-DomainObject_autoCompleteRepository

Prefix

choicesE ()

clear E ()

default E ()

disable E ()

getE ()

hide E ()

modifyE ()

removeFrori ()

setE ()

validate E ()

validate
AddT& ()

Proper Collecti Action
ty on

Y
Y
Y
Y Y Y
Y Y
Y Y Y
Y
Y
Y Y
Y
Y

Action
Param

Y

Description

Provide list of choices for a
property or action parameter.
See also autoCompleteE () .

Clear a property (set it to null).
Allows business logic to be placed
apart from the setter.

See also modifyE ()

Default value for a property or an
action parameter.

Disables (makes read-only) a
property, a collection or an action.

Access the value of a property or
collection.
See alsosetE () .

Hides a property, a collection or an
action.

Modify a property (set it to a non-
null) value.

Allows business logic to be placed
apart from the setter.

See alsoclear E () .

remove object from a collection.
[NOTE] ==== Directly mutable
collections are not currently
supported by the Wicket viewer .
==== See alsoaddTd () °

Sets the value of a property or a
collection.

Check that a proposed value of a
property or a set of action
parameters or a single action
parameter is valid.

See alsovalidateAddToE () and
validateRemoveFrork () to validate
modifications to collections.

Check that a proposed object to

add to a collection is valid.

[NOTE] ==== Directly mutable
collections are not currently
supported by the Wicket viewer .
==== See alsovalidateRemoveFror&
() , and validate E () for properties
and actions.

ugvw.pdf
ugvw.pdf

Prefix Object Proper Collecti Action Action Description

ty on Param
validate Y Check that a proposed object to
RemoveFrd() remove from a collection is valid.
[NOTE] ==== Directly mutable

collections are not currently
supported by the Wicket viewer .
==== See alsovalidateAddToE () ,
and validate E () for properties
and actions.

2.1.1. addTd ()

The addTd () supporting method is called whenever an object is added to a collection. Its purpose
is to allow additional business logic to be performed.

Directly mutable collections are not currently supported by the Wicket viewer .
. The suggested workaround is to simply define an action.

For example:

public class LibraryMember {

E public SortedSet<Book getBorrowed) { ... }

E public void setBorrowed(SortedSet<Book> borrowed { ... }

E public void addToBorrowefBook book {

E getBorrowed)). add book); !
E reminderService . addRemindefthis , book clock.today(). plusDays(21); "
E }

E public void removeFromBorrowé@ook book) { ... }

E

}

I update the collection

perform some additional business logic

See alsoremoveFroif () °

2.1.2. autoCompleteE ()

The autoCompleteéE () supporting method is called for action parameters and for properties to find
objects from a drop-down list box. The use case is when the number of candidate objects is
expected to be large, so the user is required to enter some characters to narrow the search down.

n If the number of candidate objects is comparatively small, then use choicesE ()
supporting method instead.

The signature of the supporting method depends on whether it is for a parameter or a property.

ugvw.pdf
ugvw.pdf

Parameters

For an action parameter in (0-based) position N, and of type T, the signature is:

public List <T> autoCompleteNXxkString search) { ... }

Itis also valid to return T[] , a Set<T>or a Collection<T> .

For example:

public class ShoppingCartltem {

@Property editing =Editing . DISABLED

public Product getProduct() { ... }

public void setProduct (Product product) { ... }

T > m»

@Property editing =Editing . DISABLED
public int getQuantity) { ... }
public void setQuantity (int quantity) { ... }

T > mp

@Actior{ semantics=SemanticsOf IDEMPOTENT
public ShoppingCartltem updateProduct(
Product product,
@ParameterLayonamed'Quantity")
final int quantity) {
setProduct (product);
setQuantity (quantity);
}
public Collection <Product> autoCompleteOUpdateProducdt !
@MinLengiB) String search !

) Ao
}

S~ [T> [T Ty [e mp me mp me mp e me e m

I' product is the Oth argument of the action.

the @MinLengtrannotation specifies the minimum number of characters that must be entered
before a search is performed for matching objects

Properties

For a property of type T, the signature is:

public List <T> autoCompleteXxxString search) { ... }

(As for action parameters) it is also valid to return T[] , a Set<T>or a Collection<T> .

For example:

rgant.pdf#_rgant-MinLength

public class ShoppingCartltem {

E public Product getProduct() { ... }

E public void setProduct (Product product) { ... }

E public Collection <Product> autoCompleteProduci

E @MinLengtf8) String search !
E) A

E

E)}

E

}

I the @MinLengtrannotation specifies the minimum number of characters that must be entered
before a search is performed for matching objects

2.1.3. choicesE ()

The choicesE () supporting method is called for both action parameters and for properties, to find
objects from a drop-down list box. Unlike autoCompleteE () , the use case is when the number of
objects is comparatively small and can be selected from a drop-down without any additional
filtering.

The signature of the supporting method depends on whether it is for an action parameter or a
property.

Parameters

For an action parameter in (0-based) position N, and of type T, the signature is:
public Collection <T> choicesNXxX) { ... }

For example:

rgant.pdf#_rgant-MinLength

public class ShoppingCartltem {

@Property editing =Editing . DISABLED

public Product getProduct() { ... }

public void setProduct (Product product) { ... }

[T [T T

@Property editing =Editing . DISABLED
public int getQuantity) { ... }
public void setQuantity (int quantity) { ... }

T > m»

@Actior{ semantics=SemanticsOf IDEMPOTENT
public ShoppingCartitem updateProduct(
Product product,
@ParameterLayoiiinamed'Quantity”)
final Integer quantity) {
setProduct (product);
setQuantity (quantity);
}
public Collection <Integer > choiceslUpdateProduct)) {
return Arrays. aslList (1, 2, 3,5, 10, 25, 50, 100);
}

S~ [T ™ [m» e mp me mp e me e m

Dependent Choices

Action parameters also support the notion of dependent choices, whereby the list of choices is
dependent upon the value of some other argument.

An example can be found in the (non-ASF) Isis addons' todoapp , whereby “ToDoltem's are
categorized and then can also be subcategorized:

http://github.com/isisaddons/isis-app-todoapp

@ Buy bread due by 2015-06-04 : Update

Category Professional

Subcategory

OK m

Open Source

Education

Marketing

This functionality is actually implemented as a contributed action , so the code for this is:

@DomainServiggature = NatureOfService. VIEW_CONTRIBUTIONS) ONLY

public class UpdateCategoryContributions ... {

E @ActionLayouf

E describedAs = "Update category and subcategory"

E)

E @Actior{semantics = SemanticsOf IDEMPOTENT

E public Categorized updateCategory(

E final Categorized item, !
E final Category category,

E @Parametdoptionality = Optionality . OPTIONAL

E final Subcategory subcategory) {

E item. setCategory (category);

E item. setSubcategory(subcategory);

E return item;

E }

E public List <Subcategory> choices2UpdateCategory("
E final Categorized item, #
E final Category category) { $
E return Subcategory. listFor (category);

E }

E

}

ToDoltemimplements Categorized

images/reference-methods/prefixes/choices/dependent.png
ugfun.pdf#_ugfun_how-tos_contributed-members

subcategory is the 2-th argument (0-based)
the item contributed to

$ the category selected

Dependent choices are not restricted to enums, however. Going back to the shopping cart example
shown above, the choices for the quantity parameter could be dependent upon the selected Product:

public class ShoppingCartitem {

@Actior{ semantics=SemanticsOf IDEMPOTENT
public ShoppingCartltem updateProduct(
Product product,
@ParameterLayonamed'Quantity")
final Integer quantity) {
setProduct (product);
setQuantity (quantity);
}
public Collection <Integer > choiceslUpdateProduct Product product) {
return productService . quantityChoicesFor (product); !

}

S~ [T [T e M e mp me mp e my e me me

I' productService is a (fictitous) injected service that knows what the quantity choices should be
for any given product

Properties

For a property of type T, the signature is:
public Collection <T> choicesXxx() { ... }
For example:

public class ShoppingCartltem {

E public Product getProduct() { ... }

E public void setProduct (Product product) { ... }
E public Collection <Product> choicesProduct() {
E

E }

2.1.4. clear E ()

The clear E () supporting method is called!Nlinstead of the setter!Nlwhenever an (optional)
property is to be setto null . Its purpose is to allow additional business logic to be performed.

For example:

public class LibraryMember {

public Title getFavoriteTitle () { ... }

public void setFavoriteTitle (Title title) { ... }
public void modifyFavoriteTitle (Title title) { ... }
public void clearFavoriteTitle () {

f (getTitle () ==null) { return; }
setFavoriteTitle (null); !
titleFavoritesService . decremen(title); "

S~ [T M e mp e mp e mp e

I update the property

perform some additional business logic

See also modifyE () °

2.1.5. default E ()

The default E () supporting method is called for action parameters to return the initial argument
value. This may be some sensible default (eg todayOs date, or 0 or 1), or!N!for an action that is
modifying the state of an object!N!might default to the current value of a corresponding property.

The method is also called for properties in the case when an object is newly instantiated using
DomainObjectContainer#newTransientinstance(E). This is a much less common use case. If a default
is not specified then properties are initialized to a default based on their type (eg O or false).

The signature of the supporting method depends on whether it is for an action parameter or a
property.

Parameters

For an action parameter in (0-based position n), and of type T, the signature is:
public T defaultNXxx() { ... }

For example:

10

rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer

public class ShoppingCartltem {

@Property editing =Editing . DISABLED

public Product getProduct() { ... }

public void setProduct (Product product) { ... }

[T [T T

@Property editing =Editing . DISABLED
public int getQuantity) { ... }
public void setQuantity (int quantity) { ... }

T > m»

@Actior{ semantics=SemanticsOf IDEMPOTENT

public ShoppingCartitem updateProduct(
Product product,
@ParameterLayoiiinamed'Quantity”)
final Integer quantity) {
setProduct (product);
setQuantity (quantity);

}

public Product defaultOUpdateProduct () { !
return getProduct ();

}

public int defaultlUpdateProduct () { !
return getQuantity ();

}

S > [T > [T > T e T Ty M me mp e mp e

I default the O-th parameter using the current value of the product property

default the 1-th parameter using the current value of the quantity property

Defaults are also supported (of course) for contributed actions . For example, here is a contributed
action for updating category/subcategory of the (non-ASF) Isis addons' todoapp :

ugfun.pdf#_ugfun_how-tos_contributed-members
http://github.com/isisaddons/isis-app-todoapp

@DomainServiggature = NatureOfService. VIEW_CONTRIBUTIONS) ONLY
public class UpdateCategoryContributions ... {
F @ActionLayouf
describedAs = "Update category and subcategory"
)
@Actior(semantics = SemanticsOf IDEMPOTENT
public Categorized updateCategory(
final Categorized item, !
final Category category,
@Parametdoptionality = Optionality . OPTIONAL
final Subcategory subcategory) {
item. setCategory (category);
item . setSubcategory(subcategory);
return item;
}
public Category defaultlUpdateCategory (
final Categorized item) {
return item != null ? item. getCategory(): null ;

}
public Subcategory default2UpdateCategory (#
final Categorized item) {
return item != null ? item. getSubcategory(): null ;
}

~ [T M M M M M M T T T T T T T T M m e e m

' ToDoltemimplements Categorized

defaults the 1-th parameter using the itemOs category property

defaults the 2-th parameter using the itemOs subcategory property

Properties

For a property of type T, the signature is:
public T defaultXxx () { ... }
For example:

public class ShoppingCartltem {

E public int getQuantity () { ... }

E public void setQuantity (int quantity) { ... }
E public int defaultProduct () {

E return 1;

E }

12

Alternatives

There are, in fact, two other ways to set properties of a newly instantiated object to default values.

The first is to use the created() callback, called by the framework when
DomainObjectContainer#newTransientinstance(E) is called. This method is called after any
dependencies have been injected into the service.

The second is more straightforward: simply initialize properties in the constructor. However, this
cannot use any injected services as they will not have been initialized.

2.1.6. disable E ()

The disable E () supporting method is called for properties, collections and actions. It allows the
modification of the property/collection to be vetoed (ie made read-only) and to prevent the
invocation of the action ("grey it out").

Directly mutable collections are not currently supported by the Wicket viewer ;
. they are always implicitly disabled.

Typically modification/invocation is vetoed based on the state of the domain object being interacted
with, though it could be any reason at all (eg the current date/time of the interaction, or the state of
some other related data such as stock levels, or the identity of the calling user).

The reason for vetoing a modification/invocation is normally returned as a string. However,
Apache Isis' i18n support extends this so that reasons can be internationalized.

Actions

For an action the signature of the supporting method is:

public String disableXxx(...) { ... }

where the returned string is the reason the action invocation is vetoed (or null if not vetoed), and

the supporting method takes the same parameter types as the action itself.

For example:

13

rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
ugvw.pdf
ugbtb.pdf#_ugbtb_i18n

public class Customer{
E public boolean isBlacklisted () { .. }

public Order placeOrder(
final Product product,
@ParameterLayoiinamed'Quantity")
final int quantity) {

}
public String disablePlaceOrder (

final Product product,
final int quantity
) {
return isBlacklisted ()
? "Blacklisted customers cannot place orders"
:null ;

S [T> [T [T M e M e M Ty T me oy e me e

Properties and Collections

For both properties and collections the signature of the supporting method is:

public String disableXxx() { ... }

where the returned string is the reason the modification is vetoed (or null if not vetoed).

For example:

public class Customer{

E public boolean isBlacklisted () { ... }

E public BigDecimal getCreditLimit () { ... }
E public void setCreditLimit (BigDecimal creditLimit) { ... }
E public String disableCreditLimit () {
E return isBlacklisted ()
E ? "Cannot change credit limit for blacklisted customers"
E : null ;
E }
E
}
2.1.7. getE ()

The getE () prefix is simply the normal JavaBean getter prefix that denotes properties or
collections.

14

When Apache Isis builds its metamodel, it first searches for the getter methods, characterizing them
as either properties or collections based on the return type. It then refines the metamodel based on
the presence of annotations and supporting methods.

All remaining public methods (that do not use one of the Apache Isis prefixes) are interpreted as
actions.

Any methods "left over” that do use one of the Apache lIsis prefixes, are interpreted to be orphaned.

Apache Isis "fails-fast” and will not boot, instead printing an error message to the log so that the
issue can be easily diagnosed.

See alsosetE () .

2.1.8. hideE ()

The hideE () supporting method is called for properties, collections and actions. It allows the
property/collection to be completely hidden from view.

ItOs comparatively rare for properties or collections to be imperatively hidden from view, but

actions are sometimes hidden or shown visible (as opposed to being just disabled , ie greyed out).

Actions

For an action the signature of the supporting method is either:

public boolean hideXxx(...) { ... }

where the supporting method takes the same parameter types as the action itself, or more simply:

public boolean hideXxx() { ... }

with no parameters at all. Returning true will hide the action, returning false leaves it visible.

For example:

15

public class Customer{
E public boolean isBlacklisted () { .. }

public Order placeOrder(
final Product product,
@ParameterLayoiinamed'Quantity")
final int quantity) {

}
public boolean hidePlaceOrder() {

return isBlacklisted ();

}

S~ [T> [T [y mp e mp me mp e me

Properties and Collections

For both properties and collections the signature of the supporting method is:
public boolean hideXxx() { ... }

where returning true will hide the property/collection, returning false leaves it visible.

For example:

public class Customer{
E public boolean isBlacklisted () { .. }

public BigDecimal getCreditLimit () { ... }
public void setCreditLimit (BigDecimal creditLimit) { ... }
public boolean hideCreditLimit () {

return isBlacklisted ();

}

=~ > [T 1> [T > [Tp

2.1.9. modifyE ()

The modifyE () supporting method is called!Nlinstead of the setter!N!whenever a property has been
set to be set to a new value. Its purpose is to allow additional business logic to be performed.

For example:

16

public class LibraryMember {

E public Title getFavoriteTitle () { ... }

E public void setFavoriteTitle (Title title) { ... }

E public void modifyFavoriteTitle (Title title) {

E if (getTitle () != null) {

E titleFavoritesService . decremen{(getTitle ()); !
E }

E setFavoriteTitle (title);

E titteFavoritesService . decremen(title); #
E }

E public void clearFavoriteTitle () { ... }

E

}

I perform some additional business logic
update the property

perform some additional business logic

See alsoclear E () °

2.1.10. removeFroif ()

The removeFroi () supporting method is called whenever an object is removed from a collection.
Its purpose is to allow additional business logic to be performed.

Directly mutable collections are not currently supported by the Wicket viewer .
The suggested workaround is to simply define an action.

For example:

public class LibraryMember {

public SortedSet<Book> getBorrowed) { ... }

public void setBorrowed(SortedSet<Book> borrowed) { ... }

public void addToBorrowe@Book book { ... }

public void removeFromBorrowé@ook book) {
getBorrowed). remove book); !
reminderService . removeReminddithis , book); !

S~ [T [T e M e mp me mp

I update the collection

perform some additional business logic

See alsoaddTd () °

17

ugvw.pdf

2.1.11. setE ()

The setE () prefix is simply the normal JavaBean setter prefix that denotes writeable properties or
collections.

See alsogetE () .

2.1.12. validate E ()

The validate E () supporting method is called for properties, actions and action parameters. It
allows the proposed new value for a property to be rejected, or the proposed argument of an action
parameter to be rejected, or to reject a whole set of action arguments for an actio invocation.

The reason for vetoing a modification/invocation is normally returned as a string. However,
Apache Isis' i18n support extends this so that reasons can be internationalized if required.

Action Parameter

For an action parameter in (0-based) position N, and of type T, the signature is:
public String validateNXxx (T proposed { ... }

where the returned string is the reason why the argument is rejected (or null if not vetoed).

For example:

public class Customer{

public Order placeOrder(
final Product product,
@ParameterLayoljhamed'Quantity")
final int quantity) {

}
public String validateOPlaceOrder (

final Product product) {
return product. isDiscontinued ()
? "Product has been discontinued"
null ;

> [T [T > [T > [T e T Ty mp me mp e

Action Parameter Set

In addition to validating a single single action argument, it is also possible to validate a complete set
of action arguments. The signature is:

18

ugbtb.pdf#_ugbtb_i18n

public String validateXxx (...) { ... }

where the returned string is the reason why the argument is rejected (or null if not vetoed), and the
supporting method takes the same parameter types as the action itself.

For example:

public class Customer{

E public Order placeOrder(
E final Product product,
E @ParameterLayolihamed'Quantity")
E final int quantity) {
E
E }
E public String validatePlaceOrder (
E final Product product,
E final int quantity) {
E return quantity > product. getOrderLimit ()
E ? "May not order more than" + product. getOrderLimit () + "items
for this product"
E : null ;
E }
E
}
Properties

For properties of type T the signature of the supporting method is:

public String validateXxx (T proposed { ... }

where the returned string is the reason the modification is vetoed (or null if not vetoed).

For example:

public class Customer{
public BigDecimal getCreditLimit () { ... }
public void setCreditLimit (BigDecimal creditLimit) { ... }
public validateCreditLimit (BigDecimal creditLimit) {
return creditLimit . compareToBigDecimal. ZERD < 0
? "Credit limit cannot be negative"
: null ;

S~ [T ™ e mp e mp e mp

19

2.1.13. validateAddToE ()

The validateAddToE () supporting method is called whenever an object is to be added to a
collection. Its purpose is to validate the proposed object and possibly veto the change.

Directly mutable collections are not currently supported by the Wicket viewer .
. The suggested workaround is to simply define an action.
The signature of the supporting method for a collection with element type Eis:

public String validateAddToXxx(E element) { ... }

where the returned string is the reason the collection modification invocation is vetoed (or null if
not vetoed). Apache Isis' i18n support extends this so that reasons can be internationalized if
required.

For example:

public class LibraryMember {

E public SortedSet<Book getBorrowed) { ... }

E public void setBorrowed(SortedSet<Book> borrowed) { ... }

E public String validateAddToBorrowed Book booK) {

E return book isReference ()? "Reference books cannot be borrowed" : null ;
E }

E public void validateRemoveFromBorrowgdook book) { ... }

E

}

See alsoaddTd& () and validateRemoveFrork ()

2.1.14. validateRemoveFrork ()

The validateRemoveFrork () supporting method is called whenever an object is to be removed from
a collection. Its purpose is to validate the proposed object removal and possibly veto the change.

Directly mutable collections are not currently supported by the Wicket viewer .
. The suggested workaround is to simply define an action.
The signature of the supporting method for a collection with element type Eis:
public String validateRemoveFromXx€ element) { ... }
where the returned string is the reason the collection modification invocation is vetoed (or null if

not vetoed). Apache Isis' i18n support extends this so that reasons can be internationalized if
required.

20

ugvw.pdf
ugbtb.pdf#_ugbtb_i18n
ugvw.pdf
ugbtb.pdf#_ugbtb_i18n

For example:

public class LibraryMember {
public SortedSet<Book> getBorrowed) { ... }
public void setBorrowed(SortedSet<Book> borrowed) { ... }
public String validateAddToBorrowed Book book { ... }
public void validateRemoveFromBorrowgdook book) {
return !book hasBeenReadBthis)? "You didn't read this book yet" : null

=~ > [T [T> [T > [Tp [T

See alsoremoveFroi () and validateAddToE () °

2.2. Reserved Methods

The table below lists the reserved methods that are recognized as part of Apache Isis' default
programming model.

Table 2. Reserved Methods

Method Description

cssClass() Provides a CSS class for this object instance. In conjunction with
application.css , can therefore provide custom styling of an object instance
wherever it is rendered.
See alsotitle() and iconName().

disable(E) Disable all or some of an objectOs properties

getld() Provides an optional unique identifier of a service.
If not provided, the serviceOs fully-qualified class name is used.

hide(E) Hide all or some of an objectOs properties

iconName() Provides the name of the image to render, usually alongside the title, to
represent the object. If not provided, then the class name is used to locate an
image.

See alsotitle() and cssClass()

title() Provides a title for the object.
See alsoiconName()and cssClass()

validate() Validate the objectOs state prior to persisting.

2.2.1. cssClass()
The cssClass() returns a CSS class for a particular object instance.

The Wicket viewer wraps the objectOs representation in a containing <div> with the class added.
This is done both for rendering the object either in a table or when rendering the object on its own

page.

21

rgcfg.pdf#_rgcfg_application-specific_application-css
ugvw.pdf

In conjunction with application.css , can therefore provide custom styling of an object instance

wherever it is rendered.

For example, the (non-ASF) Isis addons' todoapp uses this technique to add a strikethrough for
completed todo items. This is shown on the home page:

0 - o g
B Dashboard x _, m -

« C A | [} localhost:8080/wicket/entity?3 »| =

ToDo App ToDos ~ Analysis ~

Activity ~+ Security ~ Prototyping ~ & Hitodoapp-admin~

€ Dashboard

Not Yet Complete

Description A4
Buy milk

Vacuum house

Mow lawn

Pick up laundry

Write blog post

Organize brown bag
Sharpen knives

Submit conference session
Stage Isis release

‘Write to penpal

Complete

Description ¥ Category

Category ¥ Subcategory ¥ Whether this todo item has been completed or not.
Domestic Shopping

Domestic Housework

Domestic Garden

Domestic Chores

Professional ~ Marketing

Professional Consulting

Domestic Chores

Professional Education

Professional

Other

s Subcategory s

Open Source

Other

Whether this todo item has been completed or not. s

AtPath s

/users/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin
Jusers/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin

/users/todoapp-admin

At Path s

Do

Relative Priority s

-

S

(5}

i

w

o

~

=

10

Relative Priority s

Due By s
03-06-2015
06-06-2015
09-06-2015
09-06-2015
10-06-2015
17-06-2015
17-06-2015

24-06-2015

Due By s

Cost ¥ Doc #

0.75

7.50

BB Table ~

Apache Isis ™

The code to accomplish this is straightforward:

public class ToDoltem... {
public String cssClass() {

return !isComplete() ? "todo" "done";

=~ > [T [[mp
—

In the application.css , the following styles were then added:

tr .todo {

}

tr .done {

E text-decoration
E color: #d3d3d3
}

line-through ;

22

rgcfg.pdf#_rgcfg_application-specific_application-css
http://github.com/isisaddons/isis-app-todoapp
images/reference-methods/reserved/cssClass/strikethrough.png
rgcfg.pdf#_rgcfg_application-specific_application-css

See alsotitle() and iconName().

2.2.2. disable()

One use case that Apache Isis supports is that of a domain object with a lifecycle whereby at some
stage it should become immutable: all its properties/collections should be disabled, and/or its
actions become not invokable.

It would be painful to have to write a separate disable E () method for each and every member, so
instead Isis allows a single disable E (E) method to be implemented that is applied to all members.

The signature of the method is:

public String disable (Identifier . Type identifierType) { ... }

where |dentifier.Type is part of the Isis applib (nested static class of o.a.i.applib.ldentifier) to
distinguish between an interaction with an action, a property or an action.

Note that Apache Isis' i18n support extends this so that the returned reason can also be
internationalized.

For example:

public String disable (Identifier . Type identifierType) {
return !calendarService . isOfficeHours (clock . today/()
? "Cannot modify objects outside of office hours"

null ;

=~ [T [T T

See also the similar methods to hide() object members en-masse.

Alternatives

An alternative design!Nland one that could be easily argued is actually more flexible!Nlis to
leverage domain events with vetoing subscribers.

With this approach we define, for a given domain class, a base PropertyDomainEvent
CollectionDomainEvent and ActionDomainEvent A good pattern is to make these nested static classes.
For example:

public class ToDoltem... {
public static abstract class PropertyDomainEvenkT>
extends ToDoAppDomainModuRropertyDomainEven&ToDoltem T> {

> > [T e fmp mp

23

ugbtb.pdf#_ugbtb_i18n

where in turn:

public final class ToDoAppDomainModule
E private ToDoAppDomainMod({g
public abstract static class PropertyDomainEvenksS, T>
extends org. apacheisis . applib . services . eventbus. PropertyDomainEvenksS, T>

~ [T M M~ M m m

Then, each property/collection/action emits either these base domain events or their own subclass:

public class ToDoltem... {
public static class DescriptionDomainEvent
extends PropertyDomainEven&String > {

}
@Property
domainEvent= DescriptionDomainEvent. class

)
public String getDescription () { ... }

S [T [T > [T e T me mp [y

A vetoing subscriber can then subscribe to the domain events and veto access, eg:

@DomainObject

public class VetoOutOfOfficeHours {

E @Subscribe

E public void on(ToDoltemPropertyDomainEventev) {

E if (! calendarService . isOfficeHours (clock . today()) {

E ev. veto ("Cannot modify objects outside of office hours");
E }

E)}

E

}

Obviously thereOs an awful lot more boilerplate here, but thereOs also a lot more flexibility.

2.2.3. getld()

The getld() method applies only to domain services, and allows a unique identifer to be provided
for that service.

This identifier corresponds in many ways to the objectType() attribute for domain objects; it is used

24

rgant.pdf#_rgant-DomainObject_objectType

as an internal identifier but also appears in URLs within the RestfulObjects viewer 's REST API.

If the identifier is omitted, the services fully qualified class name is used.

Unlike domain objects, where the use of an object type is strongly encouraged (eg
using @PersistenceCapablg, it matters much less if an id is specified for domain
services. The principle benefit is shorter URLs in the REST API.

2.2.4. hide()

One use case that Apache Isis supports is that of a domain object with a lifecycle whereby at some
stage some number of the objectOs members should be hidden. For example, for an object that at
some stage is logically immutable, we might want to make all its properties/collections
unmodifiable and hide all its actions.

While we could write a separate hideE () method for each and every action, this could become
painful. So instead Isis allows a single hideE (E) method to be implemented that is applied to all
members.

The signature of the method is:

public boolean hide (Identifier . Type identifierType) { ... }

where Identifier.Type is part of the Isis applib (nested static class of o.a.i.applib.ldentifier) to
distinguish between an interaction with an action, a property or an action.
For example:

public boolean hide (Identifier . Type identifierType) {
E return identifierType == Identifier .Type ACTION&&isFrozen ();

}

See also the similar method to disable() object members en-masse.

Alternatives

An alternative design!Nland one that could be easily argued is actually more flexible!Nlis to
leverage domain events with vetoing subscribers.

There is further discussion on this approach in here.

2.2.5. iconName()

Every object is represented by an icon; this is based on the domain objectOs simple name. The
Wicket viewer searches for the image in the same package as the .class file for the domain object
or in the imagespackage. It will find any matching name and one of the followign suffexes png gif ,
jpeg, jpg, svg. If none is found, then Default.png will be used as fallback.

25

ugvro.pdf
rgant.pdf#_rgant-PersistenceCapable
ugvw.pdf

The iconName() allows the icon that to be used to change for individual object instances. These are
usually quite subtle, for example to reflect the particular status of an object. The value returned by
the iconName() method is added as a suffix to the base icon name.

For example, the (non-ASF) Isis addons' todoapp uses this technique to add an overlay for todo
items that have been completed:

& Stagelsisrelease

& | Write to penpal

Complete

Description * Cate

@
@

The screenshot below shows the location of these png icon files:

EJ todoitem
[l ToDoltem
ToDoltem.layout,json

il ToDoltem.png

] ToDoltem-done.png
[u] ToDoltem-todo.png
[l ToDaltemChannedE

The code to accomplish this is straightforward:

public class ToDoltem... {
= public String iconNamé {
return !isComplete() ? "todo" : "done";

=7 M M M m
—

See alsotitle() and cssClass()

2.2.6. title()

Every object is represented by a title. This appears both as a main header for the object when
viewed as well as being used as a hyperlink within properties and collections. It therefore must
contain enough information for the end-user to distinguish the object from any others.

This is most commonly done by including some unique key within the title, for example a
customerOs SSN, or an order number, and so forth. However note that Apache Isis itself does not
require the title to be unique; it is merely recommended in most cases.

26

http://github.com/isisaddons/isis-app-todoapp
images/reference-methods/reserved/iconName/differing.png
images/reference-methods/reserved/iconName/png-files.png

An objectOs title can be constructed in various ways, but the most flexible is to use the title()
method. The signature of this method is usually:

public String title () { ... }

Note that Apache Isis' 118n support extends this so that titles can also be internationalized.

For example, the (non-ASF) Isis addons' todoapp uses this technique to add an overlay for todo
items that have been completed:

public String title () {

}

}
return buf. toString ();

E final TitleBuffer buf = new TitleBuffer (); !
E buf. append getDescription ());

E if (isComplete()) { "
E buf. append"- Completed!");

E } else {

E try {

E final LocalDate dueBy= wrapperFactory. wrap(this). getDueBY); #
E if (dueBy!= null') {

E buf. append” due by" , dueBy;

E }

E } catch(final HiddenException ignored) { $
E

E

E

}

I simple tility class to help construct the title string
imperative conditional logic
using the WrapperFactoryto determine if the dueByfield is visible for this user E

$ E but ignore if not
As the example above shows, the implementation can be as complex as you like.
In many cases, though, you may be able to use the =~ @Title annotation.

See alsoiconName()and cssClass()

2.2.7. validate()

The validate() method is used to specify that invariants pertaining to an objectOs state are enforced.
(As of 1.8.0) there are known limitations with this functionality. Invariants are
enforced when an object is initially created and when it is edited, however

invariants are currently not enforced if an action is invoked.

The signature of the method is:

27

ugbtb.pdf#_ugbtb_i18n
http://github.com/isisaddons/isis-app-todoapp
rgsvc.pdf#_rgsvc_api_WrapperFactory
rgant.pdf#_rgant-Title

