
Fundamentals

Table of Contents
1. Fundamentals . Ê1

1.1. Other Guides . Ê1

2. Core Concepts . Ê2

2.1. Philosophy and Architecture . Ê2

2.2. Principles and Values . Ê12

2.3. Building Blocks . Ê17

2.4. Framework-provided Services . Ê24

2.5. Isis Add-ons . Ê26

2.6. Other Deployment Options . Ê27

3. Getting Started . Ê30

3.1. Prerequisites . Ê30

3.2. SimpleApp Archetype . Ê30

3.3. Datanucleus Enhancer . Ê43

4. How tos . Ê47

4.1. Class Structure . Ê47

4.2. UI Hints . Ê57

4.3. Domain Services . Ê64

4.4. Object Management (CRUD) . Ê71

4.5. Business Rules . Ê71

4.6. Derived Members . Ê73

4.7. Drop Downs and Defaults . Ê73

4.8. Bulk Actions . Ê75

4.9. Collections of values . Ê75

4.10. Subclass properties in tables . Ê75

5. JDO Mappings . Ê77

5.1. 1-m Bidirectional relationships . Ê77

6. Object Layout . Ê84

6.1. Static Object Layout . Ê84

6.2. Dynamic (XML) Layout . Ê90

6.3. Dynamic (JSON) Layout . Ê100

6.4. Application Menu Layout . Ê103

6.5. Static vs Dynamic Layouts . Ê107

7. FAQs . Ê109

7.1. Enabling Logging . Ê109

7.2. Subtype not fully populated . Ê109

7.3. How parse images in RO viewer? . Ê111

7.4. Enhance only (IntelliJ) . Ê111

7.5. Per-user Themes . Ê111

7.6. How i18n the Wicket viewer? . Ê113

7.7. How to handle void/null results . Ê114

7.8. How to implement a spellchecker? . Ê116

7.9. How run fixtures on startup? . Ê116

Chapter 1. Fundamentals
This guide introduces the core concepts and ideas behind Apache Isis, and tells you how to get
started with a Maven archetype.

It also describes a number of how-to s, describes how to influence the UI layout of your domain
objects (this is ultimately just a type of metadata), and it catalogues various FAQs.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

¥ Fundamentals (this guide)

¥ Wicket viewer

¥ Restful Objects viewer

¥ DataNucleus object store

¥ Security

¥ Testing

¥ Beyond the Basics

The reference guides are:

¥ Annotations

¥ Domain Services

¥ Configuration Properties

¥ Classes, Methods and Schema

¥ Apache Isis Maven plugin

¥ Framework Internal Services

The remaining guides are:

¥ Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

¥ Committers' Guide (release procedures and related practices)

1

ugvw.pdf
ugvro.pdf
ugvro.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. Core Concepts
This introductory chapter should give you a good about what Apache Isis actually is : the
fundamental ideas and principles that it builds upon, how it compares with other frameworks,
what the fundamental building blocks are for actually writing an Isis application, and what services
and features the framework provides for you to leverage in your own apps.

!
Parts of this chapter have been adapted from Dan HaywoodÕs 2009 book, 'Domain
Driven Design using Naked Objects'. WeÕve also added some new insights and
made sure the material weÕve used is relevant to Apache Isis.

2.1. Philosophy and Architecture
This section describes some of the core ideas and architectural patterns upon which Apache Isis
builds.

2.1.1. Domain-Driven Design

ThereÕs no doubt that we developers love the challenge of understanding and deploying complex
technologies. But understanding the nuances and subtleties of the business domain itself is just as
great a challenge, perhaps more so. If we devoted our efforts to understanding and addressing
those subtleties, we could build better, cleaner, and more maintainable software that did a better
job for our stakeholders. And thereÕs no doubt that our stakeholders would thank us for it.

A couple of years back Eric Evans wrote his book Domain-Driven Design , which is well on its way to
becoming a seminal work. In fact, most if not all of the ideas in Evans' book have been expressed
before, but what he did was pull those ideas together to show how predominantly object-oriented
techniques can be used to develop rich, deep, insightful, and ultimately useful business
applications.

There are two central ideas at the heart of domain-driven design.

¥ the ubiquitous language is about getting the whole team (both domain experts and
developers) to communicate more transparently using a domain model.

¥ Meanwhile, model-driven design is about capturing that model in a very straightforward
manner in code.

LetÕs look at each in turn.

Ubiquitous Language

ItÕs no secret that the IT industry is plagued by project failures. Too often systems take longer than
intended to implement, and when finally implemented, they donÕt address the real requirements
anyway.

Over the years we in IT have tried various approaches to address this failing. Using waterfall
methodologies, weÕve asked for requirements to be fully and precisely written down before starting
on anything else. Or, using agile methodologies, weÕve realized that requirements are likely to

2

http://www.amazon.co.uk/Domain-driven-Design-Tackling-Complexity-Software/dp/0321125215

change anyway and have sought to deliver systems incrementally using feedback loops to refine
the implementation.

But letÕs not get distracted talking about methodologies. At the end of the day what really matters is
communication between the domain experts (that is, the business) who need the system and the
techies actually implementing it. If the two donÕt have and cannot evolve a shared understanding of
what is required, then the chance of delivering a useful system will be next to nothing.

Bridging this gap is traditionally what business analysts are for; they act as interpreters between
the domain experts and the developers. However, this still means there are two (or more)
languages in use, making it difficult to verify that the system being built is correct. If the analyst
mistranslates a requirement, then neither the domain expert nor the application developer will
discover this until (at best) the application is first demonstrated or (much worse) an end user
sounds the alarm once the application has been deployed into production.

Rather than trying to translate between a business language and a technical language, with DDD
we aim to have the business and developers using the same terms for the same concepts in order to
create a single domain model . This domain model identifies the relevant concepts of the domain,
how they relate, and ultimately where the responsibilities are. This single domain model provides
the vocabulary for the ubiquitous language for our system.

Ubiquitous Language

Build a common language between the domain experts and developers by using the concepts
of the domain model as the primary means of communication. Use the terms in speech, in
diagrams, in writing, and when presenting.

If an idea cannot be expressed using this set of concepts, then go back and extend the model.
Look for and remove ambiguities and inconsistencies.

Creating a ubiquitous language calls upon everyone involved in the systemÕs development to
express what they are doing through the vocabulary provided by the model. If this canÕt be done,
then our model is incomplete. Finding the missing words deepens our understanding of the domain
being modeled.

This might sound like nothing more than me insisting that the developers shouldnÕt use jargon
when talking to the business. Well, thatÕs true enough, but itÕs not a one-way street. A ubiquitous
language demands that the developers work hard to understand the problem domain, but it also
demands that the business works hard in being precise in its naming and descriptions of those
concepts. After all, ultimately the developers will have to express those concepts in a computer
programming language.

Also, although here IÕm talking about the "domain experts" as being a homogeneous group of
people, often they may come from different branches of the business. Even if we werenÕt building a
computer system, thereÕs a lot of value in helping the domain experts standardize their own
terminology. Is the marketing departmentÕs "prospect" the same as sales' "customer," and is that the
same as an after-sales "contract"?

3

The need for precision within the ubiquitous language also helps us scope the system. Most
business processes evolve piecemeal and are often quite ill-defined. If the domain experts have a
very good idea of what the business process should be, then thatÕs a good candidate for automation,
that is, including it in the scope of the system. But if the domain experts find it hard to agree, then
itÕs probably best to leave it out. After all, human beings are rather more capable of dealing with
fuzzy situations than computers.

So, if the development team (business and developers together) continually searches to build their
ubiquitous language, then the domain model naturally becomes richer as the nuances of the
domain are uncovered. At the same time, the knowledge of the business domain experts also
deepens as edge conditions and contradictions that have previously been overlooked are explored.

We use the ubiquitous language to build up a domain model. But what do we do with that model?
The answer to that is the second of our central ideas.

Model-Driven Design

Of the various methodologies that the IT industry has tried, many advocate the production of
separate analysis models and implementation models. One example (from the mid 2000s) was that
of the OMG's Model-Driven Architecture (MDA) initiative, with its platform-independent model
(the PIM) and a platform-specific model (the PSM).

Bah and humbug! If we use our ubiquitous language just to build up a high-level analysis model,
then we will re-create the communication divide. The domain experts and business analysts will
look only to the analysis model, and the developers will look only to the implementation model.
Unless the mapping between the two is completely mechanical, inevitably the two will diverge.

What do we mean by model anyway? For some, the term will bring to mind UML class or
sequence diagrams and the like. But this isnÕt a model; itÕs a visual representation of some aspect
of a model. No, a domain model is a group of related concepts, identifying them, naming them, and
defining how they relate. What is in the model depends on what our objective is. WeÕre not looking
to simply model everything thatÕs out there in the real world. Instead, we want to take a relevant
abstraction or simplification of it and then make it do something useful for us. A model is neither
right nor wrong, just more or less useful.

For our ubiquitous language to have value, the domain model that encodes it must have a
straightforward, literal representation to the design of the software, specifically to the
implementation. Our softwareÕs design should be driven by this model; we should have a model-
driven design.

Model-Driven Design

There must be a straightforward and very literal way to represent the domain model in terms
of software. The model should balance these two requirements: form the ubiquitous
language of the development team and be representable in code.

Changing the code means changing the model; refining the model requires a change to the
code.

4

Here also the word design might mislead; some might be thinking of design documents and design
diagrams, or perhaps of user interface (UX) design. But by design we mean a way of organizing the
domain concepts, which in turn leads to the way in which we organize their representation in code.

Luckily, using object-oriented (OO) languages such as Java, this is relatively easy to do; OO is based
on a modeling paradigm anyway. We can express domain concepts using classes and interfaces, and
we can express the relationships between those concepts using associations.

So far so good. Or maybe, so far so much motherhood and apple pie. Understanding the DDD
concepts isnÕt the same as being able to apply them, and some of the DDD ideas can be difficult to
put into practice. Time to discuss the naked objects pattern and how it eases that path by applying
these central ideas of DDD in a very concrete way.

2.1.2. Naked Objects Pattern

Apache Isis implements the naked objects pattern, originally formulated by Richard Pawson. So
who better than Richard to explain the origination of the idea?

<div class="extended-quote-first"><p>The Naked Objects pattern arose, at least in part, from my
own frustration at the lack of success of the domain-driven approach. Good examples were hard to
find—​as they are still. </p></div>

<div class="extended-quote"><p>A common complaint from DDD practitioners was that
it was hard to gain enough commitment from business stakeholders, or even to engage them at all.
My own experience suggested that it was nearly impossible to engage business managers with UML
diagrams. It was much easier to engage them in rapid prototyping — where
they could see and interact with the results — but most forms of rapid
prototyping concentrate on the presentation layer, often at the expense of the underlying model
and certainly at the expense of abstract thinking. </p></div>

<div class="extended-quote"><p>Even if you could engage the business sponsors sufficiently to
design a domain model, by the time you’d finished developing the system on top of the
domain model, most of its benefits had disappeared. It’s all very well creating an agile
domain object model, but if any change to that model also dictates the modification of one or more
layers underneath it (dealing with persistence) and multiple layers on top (dealing with
presentation), then that agility is practically worthless. </p></div>

<div class="extended-quote"><p>The other concern that gave rise to the birth of Naked Objects was
how to make user interfaces of mainstream business systems more
"expressive" — how to make them feel more like using a drawing program or
CAD system. Most business systems are not at all expressive; they treat the user merely
as a dumb process-follower, rather than as an empowered problem-
solver. Even the so-called usability experts had little to say on the subject: try finding the
word "empowerment" or any synonym thereof in the index of any book on usability. Research had
demonstrated that the best way to achieve expressiveness was to create an object-oriented user
interface (OOUI). In practice, though, OOUIs were notoriously hard to
develop. </p></div>

<div class="extended-quote"><p>Sometime in the late 1990s, it dawned on me that if the domain

5

model really did represent the "ubiquitous language" of the business and those domain objects
were behaviorally rich (that is, business logic is encapsulated as methods on the domain objects
rather than in procedural scripts on top of them), then the UI could be nothing more
than a reflection of the user interface. This would solve both of my concerns. It would make it
easier to do domain-driven design, because one could instantly translate evolving domain modeling
ideas into a working prototype. And it would deliver an expressive, object-oriented user interface
for free. Thus was born the idea of Naked Objects. </p></div>

<div class="extended-quote-attribution"><p>-- Richard Pawson </p></div>

You can learn much more about the pattern in the book, Naked Objects , also freely available to read
online . Richard co-wrote the book with one of Apache Isis' committers, Robert Matthews, who was
in turn the author of the Naked Objects Framework for Java (the original codebase of of Apache
Isis).

You might also want to read RichardÕs PhD on the subject .

!

One of the external examiners for RichardÕs PhD was Trygve Reenskaug , who
originally formulated the MVC pattern at Xeroc PARC. In his paper, Baby UML ,
Reenskaug describes that when implemented the first MVC, "the conventional
wisdom in the group was that objects should be visible and tangible, thus
bridging the gap between the human brain and the abstract data within the
computer." Sound familiar? ItÕs interesting to speculate what might have been if
this idea had been implemented back then in the late 70s.

Reenskaug then goes on to say that "this simple and powerful idea failed because
É users were used to seeing [objects] from different perspectives. The visible and
tangible object would get very complex if it should be able to show itself and be
manipulated in many different ways."

In Apache Isis the responsibility of rendering an object is not the object itself, it is
the framework. Rather, the object inspects the object and uses that to decide how
to render the object. This is also extensible. In the Isis Addons (non-ASF) the Isis
addons' gmap3 wicket extension renders any object with latitude/longitude on a
map, while Isis addons' fullcalendar2 wicket extension renders any object with
date(s) on a calendar.

Object Interface Mapping

Another!Ñ!more technical!Ñ!way to think about the naked objects pattern is as an object interface
mapper , or OIM. We sometimes use this idea to explain naked objects to a bunch of developers.

Just as an ORM (such as DataNucleus or Hibernate) maps domain entities to a database, you can
think of the naked objects pattern as representing the concept of mapping domain objects to a user
interface.

This is the way that the MetaWidget team, in particular Richard Kennard, the primary contributor,
likes to describe their tool. MetaWidget has a number of ideas in common with Apache Isis,
specifically the runtime generation of a UI for domain objects. You can hear more from Kennard

6

http://www.amazon.com/exec/obidos/ISBN=0470844205/
http://www.nakedobjects.org/book/
http://www.nakedobjects.org/book/
resources/core-concepts/Pawson-Naked-Objects-thesis.pdf
http://en.wikipedia.org/wiki/Trygve_Reenskaug
http://heim.ifi.uio.no/~trygver/2007/2007.02.13-babyUML.pdf
http://www.isisaddons.org
http://github.com/isisaddons/isis-wicket-gmap3
http://github.com/isisaddons/isis-wicket-gmap3
http://github.com/isisaddons/isis-wicket-fullcalendar2
http://datanucleus.org
http://hibernate.org
http://metawidget.org/

and others on this Javascript Jabber podcast .

" We compare Apache Isis' with MetaWidget here .

What this means in practice

This screencast shows what all of this means in practice, showing the relationship between a
running app and the actual code underneath.

" This screencast shows Apache Isis v1.0.0, Jan 2013. The UI has been substantially
refined since that release.

2.1.3. Hexagonal Architecture

One of the patterns that Evans discusses in his book is that of a layered architecture . In it he
describes why the domain model lives in its own layer within the architecture. The other layers of
the application (usually presentation, application, and persistence) have their own responsibilities,
and are completely separate. Each layer is cohesive and depending only on the layers below. In
particular, we have a layer dedicated to the domain model. The code in this layer is unencumbered
with the (mostly technical) responsibilities of the other layers and so can evolve to tackle complex
domains as well as simple ones.

This is a well-established pattern, almost a de-facto; thereÕs very little debate that these
responsibilities should be kept separate from each other. With Apache Isis the responsibility for
presentation is a framework concern, the responsibility for the domain logic is implemented by the
(your) application code.

A few years ago Alistair Cockburn reworked the traditional layered architecture diagram and came
up with the hexagonal architecture :.

! The hexagonal architecture is also known as the Ports and Adapters architecture
or (less frequently) as the Onion architecture.

7

http://devchat.tv/js-jabber/150-jsj-oims
https://www.youtube.com/watch?v=ludOLyi6VyY
http://c2.com/cgi/wiki?PortsAndAdaptersArchitecture
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

Figure 1. The hexagonal architecture emphasizes multiple implementations of the different layers.

What Cockburn is emphasizing is that thereÕs usually more than one way into an application (what
he called the user-side' ports) and more than one way out of an application too (the data-side
ports). This is very similar to the concept of primary and secondary actors in use cases: a primary
actor (often a human user but not always) is active and initiates an interaction, while a secondary
actor (almost always an external system) is passive and waits to be interacted with.

Associated with each port can be an adapter (in fact, CockburnÕs alternative name for this
architecture is ports and adapters). An adapter is a device (piece of software) that talks in the
protocol (or API) of the port. Each port could have several adapters.

Apache Isis maps very nicely onto the hexagonal architecture . Apache Isis' viewers act as user-
side adapters and use the Apache Isis metamodel API as a port into the domain objects. For the
data side, we are mostly concerned with persisting domain objects to some sort of object store.
Here Apache Isis delegates most of the heavy lifting to ORM implementing the JDO API. Most of the
time this will be DataNucleus configured to persist to an RDBMS, but DataNucleus can also support
other object stores, for example Neo4J. Alternatively Apache Isis can be configured to persist using
some other JDO implementation, for example Google App Engine.

2.1.4. Aspect Oriented

Although not a book about object modelling, Evans' "Domain Driven Design" does use object
orientation as its primary modelling tool; while naked objects pattern very much comes from an
OO background (it even has 'object' in its name); Richard Pawson lists Alan Kay as a key influence.

ItÕs certainly true that to develop an Apache Isis application you will need to have good object
oriented modelling skills. But given that all the mainstream languages for developing business
systems are object oriented (Java, C#, Ruby), thatÕs not such a stretch.

However, what youÕll also find as you write your applications is that in some ways an Isis

8

application is more aspect-oriented than it is object oriented. Given that aspect-orientation!Ñ!as a
programming paradigm at least!Ñ!hasnÕt caught on, that statement probably needs unpacking a
little.

AOP Concepts

Aspect-orientation, then, is a different way of decomposing your application, by treating cross-
cutting concerns as a first-class citizen. The canonical (also rather boring) example of a cross-
cutting concern is that of logging (or tracing) all method calls. An aspect can be written that will
weave in some code (a logging statement) at specified points in the code).

This idea sounds rather abstract, but what it really amounts to is the idea of interceptors. When
one method calls another the AOP code is called in first. This is actually then one bit of AOP that is
quite mainstream; DI containers such as Spring provide aspect orientation in supporting
annotations such as @Transactional or @Secured to java beans.

Another aspect (ahem!) of aspect-oriented programming has found its way into other programming
languages, that of a mix-in or trait. In languages such as Scala these mix-ins are specified statically
as part of the inheritance hierarchy, whereas with AOP the binding of a trait to some other
class/type is done without the class "knowing" that additional behaviour is being mixed-in to it.

Realization within Apache Isis

What has all this to do with Apache Isis, then?

Well, a different way to think of the naked objects pattern is that the visualization of a domain
object within a UI is a cross-cutting concern. By following certain very standard programming
conventions that represent the Apache Isis Programming Model (POJOs plus annotations), the
framework is able to build a metamodel and from this can render your domain objects in a
standard generic fashion. ThatÕs a rather more interesting cross-cutting concern than boring old
logging!

Isis also draws heavily on the AOP concept of interceptors. Whenever an object is rendered in the
UI, it is filtered with respect to the userÕs permissions. That is, if a user is not authorized to either
view or perhaps modify an object, then this is applied transparently by the framework. The Isis
addons' security module, mentioned previously, provides a rich user/role/permissions subdomain
to use out of the box; but you can integrate with a different security mechanism if you have one
already.

Another example of interceptors are the Isis addons' command and Isis addons' audit modules. The
command module captures every user interaction that modifies the state of the system (the "cause"
of a change) while the audit module captures every change to every object (the "effect" of a change).
Again, this is all transparent to the user.

Apache Isis also has an internal event bus (you can switch between an underlying implementation
of Gauva or Axon). A domain event is fired whenever an object is interacted with, and this allows
any subscribers to influence the operation (or even veto it). This is a key mechanism in ensuring
that Isis applications are maintainable, and we discuss it in depth in the section on Decoupling .
But fundamentally its relying on this AOP concept of interceptors.

9

http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-module-command
http://github.com/isisaddons/isis-module-audit
ugbtb.pdf#_ugbtb_decoupling

Finally, Isis also a feature that is akin to AOP mix-ins. A "contributed action" is one that is
implemented on a domain service but that appears to be a behaviour of rendered domain object.
In other words, we can dissociate behaviour from data. ThatÕs not always the right thing to do of
course. In Richard PawsonÕs description of the naked objects pattern he talks about "behaviourally
rich" objects, in other words where the business functionality encapsulated the data. But on the
other hand sometimes the behaviour and data structures change at different rates. The single
responsibility principle says we should only lump code together that changes at the same rate.
Apache Isis' support for contributions (not only contributed actions, but also contributed properties
and contributed collections) enables this. And again, to loop back to the topic of this section, itÕs an
AOP concept that being implemented by the framework.

The nice thing about aspect orientation is that for the most part you can ignore these cross-cutting
concerns and - at least initially at least - just focus on implementing your domain object. Later
when your app starts to grow and you start to break it out into smaller modules, you can leverage
Apache Isis' AOP support for (mixins), (contributions) and interceptors (the event bus) to ensure
that your codebase remains maintainable.

2.1.5. How Apache Isis eases DDD

The case for DDD might be compelling, but that doesnÕt necessarily make it easy to do. LetÕs take a
look at some of the challenges that DDD throws up and see how Apache Isis (and its
implementation of the naked objects pattern) helps address them.

DDD takes a conscious effort

HereÕs what Eric Evans says about ubiquitous language:

<div class="extended-quote-first"><p>With a conscious effort by the [development] team the
domain model can provide the backbone for [the] common [ubiquitous]
language…​connecting team communication to the software implementation."
</p></div>

<div class="extended-quote-attribution"><p>-- Eric Evans </p></div>

The word to pick up on here is conscious . It takes a conscious effort by the entire team to develop
the ubiquitous language. Everyone in the team must challenge the use of new or unfamiliar terms,
must clarify concepts when used in a new context, and in general must be on the lookout for sloppy
thinking. This takes willingness on the part of all involved, not to mention some practice.

With Apache Isis, though, the ubiquitous language evolves with scarcely any effort at all. For the
business experts, the Apache Isis viewers show the domain concepts they identify and the
relationships between those concepts in a straightforward fashion. Meanwhile, the developers can
devote themselves to encoding those domain concepts directly as domain classes. ThereÕs no
technology to get distracted by; there is literally nothing else for the developers to work on.

DDD must be grounded

Employing a model-driven design isnÕt necessarily straightforward, and the development processes
used by some organizations positively hinder it. ItÕs not sufficient for the business analysts or
architects to come up with some idealized representation of the business domain and then chuck it

10

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
ugbtb.pdf#_ugbtb_decoupling_mixins
ugbtb.pdf#_ugbtb_decoupling_contributions
ugbtb.pdf#_ugbtb_decoupling_event-bus

over the wall for the programmers to do their best with.

Instead, the concepts in the model must have a very literal representation in code. If we fail to do
this, then we open up the communication divide, and our ubiquitous language is lost. There is
literally no point having a domain model that cannot be represented in code. We cannot invent our
ubiquitous language in a vacuum, and the developers must ensure that the model remains
grounded in the doable.

In Apache Isis, we have a very pure one-to-one correspondence between the domain concepts and
its implementation. Domain concepts are represented as classes and interfaces, easily
demonstrated back to the business. If the model is clumsy, then the application will be clumsy too,
and so the team can work together to find a better implementable model.

Model must be understandable

If we are using code as the primary means of expressing the model, then we need to find a way to
make this model understandable to the business.

We could generate UML diagrams and the like from code. That will work for some members of the
business community, but not for everyone. Or we could generate a PDF document from Javadoc
comments, but comments arenÕt code and so the document may be inaccurate. Anyway, even if we
do create such a document, not everyone will read it.

A better way to represent the model is to show it in action as a working prototype. As we show in
the Getting Started section, Apache Isis enables this with ease. Such prototypes bring the domain
model to life, engaging the audience in a way that a piece of paper never can.

Moreover, with Apache Isis prototypes, the domain model will come shining through. If there are
mistakes or misunderstandings in the domain model (inevitable when building any complex
system), they will be obvious to all.

Architecture must be robust

DDD rightly requires that the domain model lives in its own layer within the architecture. The other
layers of the application (usually presentation, application, and persistence) have their own
responsibilities, and are completely separate.

However, there are two immediate issues. The first is rather obvious: custom coding each of those
other layers is an expensive proposition. Picking up on the previous point, this in itself can put the
kibosh on using prototyping to represent the model, even if we wanted to do so.

The second issue is more subtle. It takes real skill to ensure the correct separation of concerns
between these layers, if indeed you can get an agreement as to what those concerns actually are.
Even with the best intentions, itÕs all too easy for custom-written layers to blur the boundaries and
put (for example) validation in the user interface layer when it should belong to the domain layer.
At the other extreme, itÕs quite possible for custom layers to distort or completely subvert the
underlying domain model.

Because of Apache Isis' generic OOUIs, thereÕs no need to write the other layers of the architecture.
Of course, this reduces the development cost. But more than that, there will be no leakage of

11

concerns outside the domain model. All the validation logic must be in the domain model because
there is nowhere else to put it.

Moreover, although Apache Isis does provide a complete runtime framework, there is no direct
coupling of your domain model to the framework. That means it is very possible to take your
domain model prototyped in Naked Objects and then deploy it on some other J(2)EE architecture,
with a custom UI if you want. Apache Isis guarantees that your domain model is complete.

Extending the reach of DDD

Domain-driven design is often positioned as being applicable only to complex domains; indeed, the
subtitle of Evans book is "Tackling Complexity in the Heart of Software". The corollary is that DDD
is overkill for simpler domains. The trouble is that we immediately have to make a choice: is the
domain complex enough to warrant a domain-driven approach?

This goes back to the previous point, building and maintaining a layered architecture. It doesnÕt
seem cost effective to go to all the effort of a DDD approach if the underlying domain is simple.

However, with Apache Isis, we donÕt write these other layers, so we donÕt have to make a call on
how complex our domain is. We can start working solely on our domain, even if we suspect it will
be simple. If it is indeed a simple domain, then thereÕs no hardship, but if unexpected subtleties
arise, then weÕre in a good position to handle them.

If youÕre just starting out writing domain-driven applications, then Apache Isis should significantly
ease your journey into applying DDD. On the other hand, if youÕve used DDD for a while, then you
should find Isis a very useful new tool in your arsenal.

2.2. Principles and Values
This section describes some of the core principles and values that the framework aims to honour
and support.

The first of these relate to how we believe your domain application should be written: it should be
decoupled, testable and so on). Others relate to the implementation of the framework itself.

The section concludes by contrasting the framework with some other open source frameworks
commonly used.

2.2.1. Your Applications

Apache Isis is primarily aimed at custom-built "enterprise" applications. The UI exposed by the
Wicket viewer is intended to be usable by domain experts, typically end-users within the
organization. The REST API exposed by the RestfulObjects viewer allows custom apps to be
developed - eg using AngularJS or similar - for use by those requiring more guidance; typically end-
users outside of the organization.

But should your organization buy, or build? Buying packaged software makes sense for statutory
requirements, such as payroll or general ledger, or document management/retrieval. But it makes
much less sense to buy packaged software for the systems that support the core business: the

12

ugvw.pdf
ugvro.pdf

software should fit the business, not the other way around.

" TODO - flesh out the following:

¥ Flexible, "just enough"

¥ Decoupled

¥ Long-term Cost of ownership

¥ dependency injection of services

¥ OO design techniques, eg dependency inversion principle

¥ an in-memory event bus

¥ applib

¥ (no "Big Ball of Mud")

¥ Honouring the Single Responsibility Principle

¥ behaviourally Complete vs Contributions/Mixins

¥ Testable

While Apache Isis can be used (very effectively) for simple CRUD-style applications, it is also
intended to be used for complex business domains. Ensuring that the business logic in such
applications is correct means that the framework must (and does) provide robust testing
support, both for developer-level unit testing and business-level (end-to-end) integration testing.

¥ Reusable building blocks

Isis addons, catalog.incode.org

2.2.2. Apache Isis itself

This section discusses some of the principles and values we apply to the development of the Apache
Isis framework itself.

Full-stack but Extensible

" TODO

Focuses on its USP

" TODO

add-ons

¥ Apache Isis is at heart a metamodel with runtime, and coordinates interations using an AOP set
of principles

¥ Apache Isis vs Isis Addons

13

¥ Apache Isis vs Shiro vs DataNucleus

i. all code has legacy in itÉ. parts of the Isis codebase are well over a decade old; and back
then a lot of the JEE technologies that weÕd like to be using just didnÕt exist, so we had to
invent the features we required ourselves.

ii. also, Apache Isis today is more pragmatic than previously

¥ a client/server solution, with AWT-based client

¥ a HTML browser, Scimpi (JSF-like, but not using JSF), É

¥ security

¥ objectstores

WeÕre working hard to remove duplication, reuse existing open source/JEE, and simplify.

The areas of Apache Isis we consider mature are those that have been developed in support of real-
world applications implemented by the committers. Foremost among these is Estatio.

Focus on enterprise / line-of-business applications, for use by internal staff.

¥ problem solvers, not process followers

¥ view models

2.2.3. Apache Isis vs É

Many other frameworks promise rapid application development and provide automatically
generated user interfaces, so how do they compare to Apache Isis?

vs MVC server-side frameworks

Some of most commonly used frameworks today are Spring MVC , Ruby on Rails and Grails , all of
which implement one flavour or another of the server-side MVC pattern. The MVC 1.0 specification
(scheduled for JavaEE 8) is also similar.

These frameworks all use the classic model-view-controller (MVC) pattern for web applications,
with scaffolding, code-generation, and/or metaprogramming tools for the controllers and views, as
well as convention over configuration to define how these components interact. The views
provided out of the box by these frameworks tend to be simple CRUD-style interfaces. More
sophisticated behavior is accomplished by customizing the generated controllers.

The most obvious difference when developing an Apache Isis application is its deliberate lack of an
explicit controller layer; non- CRUD behavior is automatically made available in its generic object-
oriented _UI_s. More sophisticated UIs can be built either by extending Apache Isis' Wicket viewer
or by writing a bespoke UI leveraging the REST (hypermedia) API automatically exposed by Isis'
Restful Objects viewer . Other frameworks can also be used to implement REST APIs, of course, but
generally they require a significant amount of development to get anywhere near the level of
sophistication provided automatically by Apache Isis' REST API.

Although these frameworks all provide their own ecosystems of extensions, Apache Isis' equivalent
Isis Addons (non-ASF) tend to work at a higher-level of abstraction. For example, each of these

14

http://www.spring.io/
http://rubyonrails.org/
http://www.grails.org
ugvw.pdf#_ugvw_extending
ugvro.pdf
ugvro.pdf
http://www.isisaddons.org

frameworks will integrate with various security mechanism, but the Isis addons' security module
provides a full subdomain of users, roles, features and permissions that can be plugged into any Isis
application. Similarly, the Isis addons' command and Isis addons' audit modules in combination
provide a support for auditing and traceability that can also be used for out of the box profiling.
Again, these addons can be plugged into any Isis app.

In terms of testing support, each of these other frameworks provide mechanisms to allow the
webapp to be tested from within a JUnit test harness. Apache Isis' support is similar. Where Apache
Isis differs though is that it enables end-to-end testing without the need for slow and fragile
Selenium tests. Instead, Apache Isis provides a " WrapperFactory " domain service that allows the
generic UI provided to in essence be simulated. On a more pragmatic level, the Isis addons' fakedata
module does "what it says on the tin", allowing both unit- and integration-tests to focus on the
salient data and fake out the rest.

vs CQRS

The CQRS architectural pattern (it stands for "Command Query Responsbility Separation") is the
idea that the domain objects that mutate the state of the system - to which commands are sent and
which then execute - should be separated from the mechanism by which the state of the system is
queried (rendered). The former are sometimes called the "write (domain) model", the latter the
"read model".

In the canonical version of this pattern there are separate datastores. The commands act upon a
command/write datastore. The data in this datastore is then replicated in some way to the
query/read datastore, usually denormalized or otherwise such that it is easy to query. CQRS
advocates recommend using very simple (almost naive) technology for the query/read model; it
should be a simple projection of the query datastore. Complexity instead lives elsewhere: business
logic in the command/write model, and in the transformation logic betweeen the command/write
and read/query datastores. In particular, there is no requirement for the two datastores to use the
same technology: one might be an RDBMS while the other a NoSQL datastore or even
datawarehouse.

In most implementations the command and query datastores are not updated in the same
transaction; instead there is some sort of replication mechanism. This also means that the query
datastore is eventually consistent rather than always consistent; there could be a lag of a few
seconds before it is updated. This means in turn that CQRS implementations require mechanisms
to cater for offline query datastores; usually some sort of event bus.

The CQRS architectureÕs extreme separation of responsibilities can result in a lot of boilerplate.
Any given domain concept, eg Customer, must be represented both in the command/write model and
also in the query/read model. Each business operation upon the command model is reified as a
command object, for example PlaceOrderCommand.

Comparing CQRS to Apache Isis, the most obvious difference is that Apache Isis does not separate
out a command/write model from a query/read model, and there is usually just a single datastore.
But then again, having a separate read model just so that the querying is very straightforward is
pointless with Apache Isis because, of course, Isis provides the UI "for free".

There are other reasons though why a separate read model might make sense, such as to

15

http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-module-command
http://github.com/isisaddons/isis-module-audit
ugtst.pdf#_ugtst_integ-test-support_wrapper-factory
http://github.com/isisaddons/isis-module-fakedata

precompute particular queries, or against denormalized data. In these cases Apache Isis can often
provide a reasonable alternative, namely to map domain entities against RDBMS views, either
materialized views or dynamic. In such cases there is still only a single physical datastore, and so
transactional integrity is retained.

Or, the CQRS architecture can be more fully implemented with Apache Isis by introducing a
separate read model, synchronized using the PublishingService , or using subscribers on the
EventBusService. One can then use view models to surface the data in the external read datastore.

With respect to commands, Apache Isis does of course support the CommandService which allows
each business action to be reified into a Command. However, names are misleading here: Apache Isis'
commands are relatively passive, merely recording the intent of the user to invoke some operation.
In a CQRS architecture, though, commands take a more active role, locating and acting upon the
domain objects. More significantly, in CQRS each command has its own class, such as
PlaceOrderCommand, instantiated by the client and then executed. With Apache Isis, though, the end-
user merely invokes the placeOrder(É) action upon the domain object; the framework itself creates
the Command as a side-effect of this.

In CQRS the commands correspond to the business logic that mutates the system. Whether this
logic is part of the command class (PlaceOrderCommand) or whether that command delegates to
methods on the domain object is an implementation detail; but it certainly is common for the
business logic to be wholly within the command object and for the domain object to be merely a
data holder of the data within the command/write datastore.

In Apache Isis this same separation of business logic from the underlying data can be accomplished
most straightforwardly using mixins or contributions . In the UI (surfaced by the Wicket viewer) or
in the REST API (surfaced by the RestfulObjects viewer) the behaviour appears to reside on the
domain object; however the behaviour actually resides on separate classes and is mixed in (like a
trait) only at runtime.

vs Event Sourcing

The CQRS architecture , discussed above, is often combined with Event Sourcing pattern, though
they are separate ideas.

With event sourcing, each business operation emits a domain event (or possibly events) that allow
other objects in the system to act accordingly. For example, if a customer places an order then this
might emit the OrderPlacedEvent. Most significantly, the subscribers to these events can include the
datastore itself; the state of the system is in effect a transaction log of every event that has occurred
since "the beginning of time": it is sometimes called an event store. With CQRS, this event
datastore corresponds to the command/write datastore (the query/read datastore is of course
derived from the command datastore).

Although it might seem counter-intuitive to be able store persistent state in this way (as a souped
up "transaction log"), the reality is that with modern compute capabilities make it quite feasible to
replay many 10s/100s of thousands of events in a second. And the architecture supports some
interesting use cases; for example it becomes quite trivial to rewind the system back to some
previous point in time.

When combined with CQRS we see a command that triggers a business operation, and an event that

16

rgsvc.pdf#_rgsvc_api_PublishingService
rgcms.pdf#_rgcms_classes_super_AbstractSubscriber
rgsvc.pdf#_rgsvc_api_EventBusService
ugbtb.pdf#_ugbtb_view-models
rgsvc.pdf#_rgsvc_spi_CommandService
ugbtb.pdf#_ugbtb_decoupling_mixins
ugvw.pdf
ugvro.pdf
_ugfun_core-concepts_principles_apache-isis-vs_cqrs

results from it. So, a PlaceOrderCommand command can result in an OrderPlacedEvent event. A
subscriber to this event might then generate a further command to act upon some other system (eg
to dispatch the system). Note that the event might be dispatched and consumed in-process or
alternatively this might occur out-of-process. If the latter, then the subscriber will operate within a
separate transaction, meaning the usual eventual consistency concerns and also compensating
actions if a rollback is required. CQRS/event sourcing advocates point out - correctly that this is
just how things are in the "real world" too.

In Apache Isis every business action (and indeed, property and collection) emits domain events
through the EventBusService , and can optionally also be published through the PublishingService .
The former are dispatched and consumed in-process and within the same transaction, and for this
reason the subscribers can also veto the events. The latter are intended for out-of-process
consumption; the (non-ASF) Isis addons' publishing and Isis addons' publishmq modules provide
implementations for dispatching either through a RDBMS database table, or directly through to an
ActiveMQ message queue (eg wired up to Apache Camel event bus).

vs MetaWidget

MetaWidget (mentioned earlier has a number of ideas in common with Apache Isis, specifically the
runtime generation of a UI for domain objects. And like Apache Isis, MetaWidget builds its own
metamodel of the domain objects and uses this to render the object.

However, there is a difference in philosophy in that MW is not a full-stack framework and does not
(in their words) try to "own the UI". Rather they support a huge variety of UI technologies and
allow the domain object to be rendered in any of them.

In contrast, Apache Isis is full-stack and does generate a complete UI; we then allow you to
customize or extend this UI (as per the various Isis Addons (non-ASF), and we also provide a full
REST API through the Restful Objects viewer

Also, itÕs worth noting that MetaWidget does have an elegant pipeline architecture, with APIs to
allow even its metamodel to be replaced. It would be feasible and probably quite straightforward
to use Apache Isis' own metamodel as an implementation of the MetaWidget API. This would allow
MetaWidget to be able to render an Apache Isis domain application.

2.3. Building Blocks
In this section we run through the main building blocks that make up an Apache Isis application.

2.3.1. A MetaModel

At its core, Apache Isis is a metamodel that is built at runtime from the domain classes (eg
Customer.java), along with optional supporting metadata (eg Customer.layout.json).

The contents of this metamodel is inferred from the Java classes discovered on the classpath: the
entities and supporting services, as well the members of those classes. The detail of the metamodel
is generally explicit, usually represented by Java annotations such as @Title or @Action. Notably the
metamodel is extensible ; it is possible to teach Apache Isis new programming conventions/rules
(and conversely to remove those that are built in).

17

rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_spi_PublishingService
rgcms.pdf#_rgcms_classes_super_AbstractSubscriber
http://github.com/isisaddons/isis-module-publishing
http://github.com/isisaddons/isis-module-publishmq
http://camel.apache.org
http://camel.apache.org
http://www.isisaddons.org
ugvro.pdf
ugbtb.pdf#_ugbtb_programming-model

Most of the annotations recognized by the framework are defined by the Apache Isis framework
itself. For example the @Title annotation - which identifies how the framework should derive a
human-readable label for each rendered domain object - is part of the
org.apache.isis.applib.annotations package. However the framework also recognizes certain
other JEE annotations such as @javax.inject.Inject (used for dependency injection).

The framework uses DataNucleus for its persistence mechanism. This is an ORM that implements
the JDO and JPA APIs, and which can map domain objects either to an RDBMS or to various NoSQL
objectstores such as MongoDB or Neo4J. Apache Isis recognizes a number of the JDO annotations
such as @javax.jdo.annotations.Column(allowsNull= É) .

In addition, the framework builds up the metamodel for each domain object using layout hints ,
such as Customer.layout.json . These provide metadata such as grouping elements of the UI
together, using multi-column layouts, and so on. The layout file can be modified while the
application is still running, and are picked up automatically; a useful way to speed up feedback.

!
At the time of writing Apache Isis only recognizes and supports the JDO API,
though we expect JPA to be supported in the future. We also expect to generalize
support for .layout.json to be able to read such metadata from other sources.

2.3.2. Type of Domain Objects

Most domain objects that the end-user interacts with are domain entities , such as Customer, Order,
Product and so on. These are persistent objects and which are mapped to a database (usually
relational), using JDO/DataNucleus annotations. From the end-userÕs perspective the UI displays a
single domain object per page; they can then inspect and modify its state, and navigate to related
objects.

The next type of domain object to discuss is domain services . These are (usually) singleton
stateless services that provide additional functionality. The behaviour of these services is rendered
in various ways, though the most obvious is as the menu actions on the top-level menu bars in the
Wicket viewer 's UI.

Domain objects can also delegate to domain services; domain services are automatically injected
into every other domain object; this includes domain entities as well as other services. This
injection of domain services into entities is significant: it allows business logic to be implemented in
the domain entities, rather than have it "leach away" into supporting service layers. Said another
way: it is the means by which Apache Isis helps you avoid the anaemic domain model anti-pattern.

As well as domain entities - mapped to a datastore - Apache Isis also supports view models . End
users interact with view models in the same way as a domain entity, indeed they are unlikely to
distinguish one from the other. However view models are not mapped to the underlying database,
rather they represent some aggregation of state from one or more underlying entities. Their state is
serialized and recreated from their internal identifier; this identifier is visible as the objectÕs URL in
the Wicket viewer or RestfulObjects viewer .

ThereÕs no need though for the view model to aggregate the state of regular domain entities. A view
model could also be used as a proxy for some externally managed entity, accessed over a web
service or REST API; it could even be a representation of state held in-memory (such as user

18

ugvw.pdf
ugvw.pdf
ugvro.pdf

preferences, for example).

There are also several types of domain services. Most easily described are those domain services
(discussed above) that are represented as the menu actions on top-level menu bars. Another
variation are contributed services - domain services that contribute behaviour or (derived) state
to entities/view models. Finally domain services may also simply provide additional non-UI
functionality; an example being to perform an address geocoding lookup against the google-maps
API.

Also worth mentioning: domain services can also be either singletons (discussed above) or request-
scoped; the latter being annotated with @javax.enterprise.context.RequestScoped . An example of
the request-scoped service is the Scratchpad service, for sharing arbitrary data between multiple
objects.

The final type of domain object is the mixin . These are similar to contributed services in that they
also contribute (or rather, mixin) both behaviour or (derived) state to entities/view models.
However, they provide a more control over contributed services, with a cleaner programming
model similar to traits found in other languages.

The diagram below summarizes the various types of domain object:

The Apache Isis programming model uses annotations to distinguish these object types:

¥ view models are annotated either with @DomainObject(nature=VIEW_MODEL) or using @ViewModel.
Which is used is a matter of personal preference.

It is also possible to implement the ViewModel interface, for finer-grained control.

¥ domain entities that are persisted to the database (as the vast majority will) are annotated with
@DomainObject(nature=ENTITY). In addition such domain entities are annotated with the
JDO/DataNucleus annotation of @javax.jdo.annotations.PersistenceCapable .

19

rgsvc.pdf#_rgsvc_api_Scratchpad
images/core-concepts/building-blocks/types-of-domain-object.png

In addition, if a domain entity is a proxy for state managed in an external system, or merely for
some state held in-memory, then @DomainObject(nature=EXTERNAL_ENTITY) or
@DomainObject(nature=INMEMORY_ENTITY) can be used.

¥ mixins are annotated either with @DomainObject(nature=MIXIN) or using @Mixin. As for view
models, which is used is a matter of personal preference.

¥ finally, domain services ` are annotated with @DomainService(nature=É) where the nature is
either VIEW_MENU_ONLY (for domain services whose actions appear on the top-level menu bars), or
VIEW_CONTRIBUTIONS_ONLY (for domain services whose actions are contributed to entities or view
models), or DOMAIN (for domain services whose functionality is simply for other domain objects
to invoke programmatically).

It is also possible to specify a nature of simply VIEW, this combining VIEW_MENU_ONLY and
VIEW_CONTRIBUTIONS_ONLY. This is in fact the default, useful for initial prototyping. A final nature
is VIEW_REST_ONLY which is for domain services whose functionality is surfaced only by the
RestfulObjects viewer .

Worth emphasising is that domain entities and view models hold state, whereas domain services
are generally stateless. If a domain service does hold state (eg the Scratchpad service noted above)
then it should be @RequestScoped so that this state is short-lived and usable only within a single
request.

2.3.3. Object Members

Every domain object in Apache Isis consists of (at most) three types of members:

¥ properties, such as a `CustomerÕs `firstName

¥ collections, such as a CustomerÕs `orders collection of Orders

¥ actions, such as a Customer'`s `placeOrder(É) method.

Some domain objects - specifically domain services and mixins - only have actions. In the case of
contributing services and mixins these actions can (depending upon their semantics and
signatures) be represented as derived properties or collections on the entity/view model to which
they contribute/mix-in.

Properties

Properties follow the standard getter/setter pattern, with the return type being a scalar (a value
object or another entity or view model).

For example, with:

20

ugvro.pdf

public class Customer
Ê private String firstName ;
Ê public String getFirstName() { return firstName ; }
Ê public void setFirstName(String firstName) { this . firstName = firstName ; }
Ê ...
}

the framework infers the Customer domain entity, which in turn has a firstName string property .

Collections

Collections are also represented by a getter and setter, however the return type is a Collection or
subtype.

For example, with:

public class Customer
Ê private SortedSet<Order> orders = new TreeSet<Order>();
Ê public SortedSet<Order> getOrders() { return orders ; }
Ê public void setOrders(SortedSet<Order> orders) { this . orders = orders ; }
Ê ...
}

the framework infers the orders collection .

!
The most commonly used collection type is java.util.SortedSet ; entities are most
commonly mapped to a relational database (ie a datastore with set semantics)
and we recommend that all entities define a natural ordering so that when
rendered in the UI they will be ordered "meaningfully" to the end-user.

Actions

The third type of object member is actions. (To a first approximation), actions are all public
methods that do not represent properties or collections.

For example:

public class Customer
Ê public Customer placeOrder(Product p, int quantity) { ... }
Ê ...
}

corresponds to the placeOrder action .

21

"
The above is a simplification; the Apache Isis programming model also recognizes
a number of other supporting methods each of which has its own prefix such as
hide , disable or validate . These can be considered as "reserved words" in Apache
Isis, and do not correspond to actions even though they have public visibility.

2.3.4. Entities vs View Models

When developing an Apache Isis application you will most likely start off with the persistent
domain entities: Customer, Order, Product, and so on. For some applications this may well suffice.
However, if the application needs to integrate with other systems, or if the application needs to
support reasonably complex business processes, then you may need to look beyond just domain
entities.

To support these use cases we support view models. In the same way that an (RDBMS) database
view can aggregate and abstract from multiple underlying database tables, so a view model sits on
top of one or many underlying entities.

View models are not persisted, but nevertheless they can have behaviour (and titles, and icons) just
like domain entities. Indeed, to a user of the system there is no particular distinction (again, in the
same way that when using an RDBMS one can use database views and database tables pretty much
interchangeably).

View models generally tend to be associated with supporting a particular use case; logically they
are part of the application layer, not part of the domain layer (where entities live).

We introduce view models here because they do get mentioned quite often within the users and
reference guide. However, we do consider them a more advanced topic; we generally recommend
that you build your applications from the domain layer up, rather than from the view model down.

For further discussion on view models, see this topic .

2.3.5. Domain Services

Domain services consist of a set of logically grouped actions, and as such follow the same
conventions as for entities. However, a service cannot have (persisted) properties, nor can it have
(persisted) collections.

Domain services are instantiated once and once only by the framework, and are used to centralize
any domain logic that does not logically belong in a domain entity or value. Apache Isis will
automatically inject services into every domain entity that requests them, and into each other.

For convenience you can inherit from AbstractService or one of its subclasses, but this is not
mandatory.

Domain Services vs View Services

" TODO

@DomainService(nature=É)

22

ugbtb.pdf#_ugbtb_view-models

Factories, Repositories and Services

A distinction is sometimes made between a factory (that creates object) and a repository (that
is used to find existing objects). You will find them discussed separately in Evans' Domain
Driven Design , for example.

In Apache Isis these are all implemented as domain services. Indeed, it is quite common to
have a domain service that acts as both a factory and a repository.

2.3.6. Mixins & Contributions

" TODO

For more information, see this topic on contribution s, and this topic on mixin s.

2.3.7. Domain Events

" TODO; see domain event classes.

UI Events

" TODO; see UI event classes.

2.3.8. OIDs

As well as defining a metamodel of the structure (domain classes) of its domain objects, Apache Isis
also manages the runtime instances of said domain objects.

When a domain entity is recreated from the database, the framework keeps track of its identity
through an "OID": an object identifier. Fundamentally this is a combination of its type (domain
class), along with an identifier. You can think of it as its "primary key", except across all domain
entity types.

For portability and resilience, though, the object type is generally an alias for the actual domain
class: thus "customers.CUS", say, rather than "com.mycompany.myapp.customers.Customer". This is
derived from an annotation. The identifier meanwhile is always converted to a string.

Although simple, the OID is an enormously powerful concept: it represents a URI to any domain
object managed by a given Apache Isis application. With it, we have the ability to lookup any
arbitrary domain objects.

Some examples:

¥ an OID allows sharing of information between users, eg as a deep link to be pasted into an
email.

¥ the information within an OID could be converted into a barcode, and stamped onto a PDF
form. When the PDF is scanned by the mail room, the barcode could be read to attach the

23

http://books.google.com/books/about/Domain_Driven_Design.html?id=hHBf4YxMnWMC
http://books.google.com/books/about/Domain_Driven_Design.html?id=hHBf4YxMnWMC
ugbtb.pdf#_ugbtb_decoupling_contributions
ugbtb.pdf#_ugbtb_decoupling_mixins
rgcms.pdf#_rgcms_classes_domainevent
rgcms.pdf#_rgcms_classes_uievent

correspondence to the relevant domain object.

¥ as a handle to any object in an audit record, as used by AuditerService or AuditingService (the
latter deprecated);

¥ similarly within implementations of CommandService to persist Command objects

¥ similarly within implementations of PublisherService to persist published action invocations

¥ and of course both the RestfulObjects viewer and Wicket viewer use the oid tuple to look up,
render and allow the user to interact with domain objects.

Although the exact content of an OID should be considered opaque by domain objects, it is possible
for domain objects to obtain OIDs. These are represented as Bookmark`s, obtained from the
`BookmarkService. Deep links meanwhile can be obtained from the @DeepLinkService.

OIDs can also be converted into XML format, useful for integration scenarios. The common schema
XSD defines the oidDto complex type for precisely this purpose.

2.3.9. Value Objects (Primitives)

" TODO

2.4. Framework-provided Services
Most framework domain services are API: they exist to provide support functionality to the
applicationÕs domain objects and services. In this case an implementation of the service will be
available, either by Apache Isis itself or by Isis Addons (non ASF).

Some framework domain services are SPI: they exist primarily so that the application can influence
the frameworkÕs ehaviour. In these cases there is (usually) no default implementation; it is up to
the application to provide an implementation.

General purpose:

¥ DomainObjectContainer; mostly deprecated, replaced by:

¥ ClockService

¥ ConfigurationService

¥ MessageService

¥ RepositoryService

¥ ServiceRegistry

¥ TitleService

¥ UserService

¥ IsisJdoSupport

¥ WrapperFactory

¥ EventBusService

¥ EmailService

Commands/Interactions/Background/Auditing/Publishing/Profiling:

24

rgsvc.pdf#_rgsvc_spi_AuditerService
rgsvc.pdf#_rgsvc_spi_AuditingService
rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_spi_PublisherService
ugvro.pdf
ugvw.pdf
rgsvc.pdf#_rgsvc_api_BookmarkService
rgant.pdf#_rgant-DeepLinkService
rgcms.pdf#_rgcms_schema-common
rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_api_ClockService
rgsvc.pdf#_rgsvc_api_ConfigurationService
rgsvc.pdf#_rgsvc_api_MessageService
rgsvc.pdf#_rgsvc_api_RepositoryService
rgsvc.pdf#_rgsvc_api_ServiceRegistry
rgsvc.pdf#_rgsvc_api_TitleService
rgsvc.pdf#_rgsvc_api_UserService
rgsvc.pdf#_rgsvc_api_IsisJdoSupport
rgsvc.pdf#_rgsvc_api_WrapperFactory
rgsvc.pdf#_rgsvc_api_EventBusService
rgsvc.pdf#_rgsvc_api_EmailService

¥ CommandContext (SPI)

¥ CommandService (SPI)

¥ InteractionContext (SPI)

¥ AuditingService (SPI) (deprecated)

¥ AuditerService (SPI)

¥ BackgroundService

¥ BackgroundCommandService (SPI)

¥ PublishingService (SPI) (deprecated)

¥ PublishererService (SPI)

¥ MetricsService

Information Sharing:

¥ Scratchpad

¥ ActionInvocationContext

¥ QueryResultsCache

UserManagement:

¥ UserProfileService (SPI)

¥ UserRegistrationService (SPI)

¥ EmailNotificationService (SPI)

Bookmarks and Mementos:

¥ BookmarkService

¥ MementoService

¥ DeepLinkService

¥ JaxbService

¥ XmlSnapshotService

Layout and UI Management:

¥ HomePageProviderService

¥ LayoutService

¥ GridLoaderService (SPI)

¥ GridService (SPI)

¥ GridSystemService (SPI)

¥ HintStore (SPI)

¥ RoutingService (SPI)

¥ UrlEncodingService (SPI)

REST Support:

25

rgsvc.pdf#_rgsvc_api_CommandContext
rgsvc.pdf#_rgsvc_spi_CommandService
rgsvc.pdf#_rgsvc_api_InteractionContext
rgsvc.pdf#_rgsvc_spi_AuditingService
rgsvc.pdf#_rgsvc_spi_AuditerService
rgsvc.pdf#_rgsvc_api_BackgroundService
rgsvc.pdf#_rgsvc_spi_BackgroundCommandService
rgsvc.pdf#_rgsvc_spi_PublishingService
rgsvc.pdf#_rgsvc_spi_PublisherService
rgsvc.pdf#_rgsvc_api_MetricsService
rgsvc.pdf#_rgsvc_api_Scratchpad
rgsvc.pdf#_rgsvc_api_ActionInvocationContext
rgsvc.pdf#_rgsvc_api_QueryResultsCache
rgsvc.pdf#_rgsvc_spi_UserProfileService
rgsvc.pdf#_rgsvc_spi_UserRegistrationService
rgsvc.pdf#_rgsvc_spi_EmailNotificationService
rgsvc.pdf#_rgsvc_api_BookmarkService
rgsvc.pdf#_rgsvc_api_MementoService
rgsvc.pdf#_rgsvc_api_DeepLinkService
rgsvc.pdf#_rgsvc_api_JaxbService
rgsvc.pdf#_rgsvc_api_XmlSnapshotService
rgsvc.pdf#_rgsvc_api_HomePageProviderService
rgsvc.pdf#_rgsvc_api_LayoutService
rgsvc.pdf#_rgsvc_spi_GridLoaderService
rgsvc.pdf#_rgsvc_spi_GridService
rgsvc.pdf#_rgsvc_spi_GridSystemService
rgsvc.pdf#_rgsvc_spi_HintStore
rgsvc.pdf#_rgsvc_spi_RoutingService
rgsvc.pdf#_rgsvc_spi_UrlEncodingService

¥ AcceptHeaderService

¥ SwaggerService

¥ ContentMappingService (SPI)

Metamodel:

¥ ApplicationFeatureRepository

¥ MetamodelService

Other API:

¥ FixtureScriptsDefault

¥ GuiceBeanProvider

¥ SudoService

¥ TransactionService

Other SPI:

¥ ClassDiscoveryService (SPI)

¥ ErrorReportingService (SPI)

¥ EventSerializer (SPI)

¥ ExceptionRecognizer (SPI)

¥ FixtureScriptsSpecificationProvider (SPI)

¥ LocaleProvider (SPI)

¥ TranslationService (SPI)

¥ TranslationsResolver (SPI)

¥ TranslationsResolver (SPI)

A full list of services can be found in the Domain Services reference guide.

2.5. Isis Add-ons
The Isis Addons website provides a number of reusable modules and other extensions for Apache
Isis. This chapter focuses just on the modules, all of which have a name of the form isis-module-
xxx.

Note that Isis addons, while maintained by Apache Isis committers, are not part
of the ASF.

The modules themselves fall into four broad groups:

¥ modules that provide an implementations of API defined by Apache Isis

where Apache Isis has hooks to use the service if defined by provides no implementations of its
own. The command , auditing , publishing , security and sessionlogger modules fall into this
category. Typically the domain objects themselves wouldnÕt interact with these services

26

rgsvc.pdf#_rgsvc_api_AcceptHeaderService
rgsvc.pdf#_rgsvc_api_SwaggerService
rgsvc.pdf#_rgsvc_spi_ContentMappingService
rgsvc.pdf#_rgsvc_api_ApplicationFeatureRepository
rgsvc.pdf#_rgsvc_api_MetamodelService
rgsvc.pdf#_rgsvc_api_FixtureScriptsDefault
rgsvc.pdf#_rgsvc_api_GuiceBeanProvider
rgsvc.pdf#_rgsvc_api_SudoService
rgsvc.pdf#_rgsvc_api_TransactionService
rgsvc.pdf#_rgsvc_spi_ClassDiscoveryService
rgsvc.pdf#_rgsvc_spi_ErrorReportingService
rgsvc.pdf#_rgsvc_spi_EventSerializer
rgsvc.pdf#_rgsvc_spi_ExceptionRecognizer
rgsvc.pdf#_rgsvc_spi_FixtureScriptsSpecificationProvider
rgsvc.pdf#_rgsvc_spi_LocaleProvider
rgsvc.pdf#_rgsvc_spi_TranslationService
rgsvc.pdf#_rgsvc_spi_TranslationsResolver
rgsvc.pdf#_rgsvc_spi_TranslationsResolver
rgsvc.pdf#_rgsvc
http://www.isisaddons.org
http://github.com/isisaddons/isis-module-command
http://github.com/isisaddons/isis-module-audit
http://github.com/isisaddons/isis-module-publishing
http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-module-sessionlogger

¥ modules that provide standalone domain services with their own API and implementation

These are simply intended to be used by domain objects. The docx , excel , settings and
stringinterpolator fall into this category.

¥ modules that provide standalone domain entities (and supporting services) for a particular
subdomain

The tags module falls into this category

¥ modules that provide developer utilities

Not intended for use by either the framework or domain objects, but provide utilities that the
developer themselves might use. The devutils module (not suprisingly) falls into this category

Each of the modules has a full README and example application demonstrating their usage. The
sections below briefly outline the capabilities of these modules.

2.6. Other Deployment Options
Apache Isis is a mature platform suitable for production deployment, with its "sweet spot" being
line-of-business enterprise applications. So if youÕre looking to develop that sort of application, we
certainly hope youÕll seriously evaluate it.

But there are other ways that you can make Apache Isis work for you; in this chapter we explore a
few of them.

2.6.1. Deploy to production

LetÕs start though with the default use case for Apache Isis: building line-of-business enterprise
applications, on top of its Wicket viewer.

Apache Wicket, and therefore Apache Isis in this configuration, is a stateful architecture. As a
platform it is certainly capable of supporting user bases of several thousand (with perhaps one or
two hundred concurrent); however it isnÕt an architecture that you should try to scale up to tens of
thousands of concurrent users.

The UI UI generated by the Wicket viewer is well suited to many line-of-business apps, but itÕs also
worth knowing that (with a little knowledge of the Wicket APIs) it relatively straightforward to
extend. As described in Isis addons chapter, the viewer already has integrations with google maps ,
a full calendar and an export to Excel component. We are also aware of integrations with SVG
images (for floor maps of shopping center) and of custom widgets displaying a catalogue (text and
images) of medical diseases.

Deploying on Apache Isis means that the framework also manages object persistence. For many
line-of-business applications this will mean using a relational database. It is also possible (courtesy
of its integratinon with DataNucleus) to deploy an Isis app to a NoSQL store such as Neo4J or
MongoDB; and it is also possible to deploy to cloud platforms such as Google App Engine (GAE) .

27

http://github.com/isisaddons/isis-module-docx
http://github.com/isisaddons/isis-module-excel
http://github.com/isisaddons/isis-module-settings
http://github.com/isisaddons/isis-module-stringinterpolator
http://github.com/isisaddons/isis-module-tags
http://github.com/isisaddons/isis-module-devutils
https://github.com/isisaddons/isis-wicket-gmap3
https://github.com/isisaddons/isis-wicket-fullcalendar2
https://github.com/isisaddons/isis-wicket-excel
http://www.datanucleus.org
https://cloud.google.com/appengine/docs

2.6.2. Use for prototyping

Even if you donÕt intend to deploy your application on top of Apache Isis, there can be a lot of value
in using Apache Isis for prototyping. Because all you need do to get an app running is write domain
objects, you can very quickly explore a domain object model and validate ideas with a domain
expert.

By focusing just on the domain, youÕll also find that you start to develop a ubiquitous language - a
set of terms and concepts that the entire team (business and technologists alike) have a shared
understanding.

Once youÕve sketched out your domain model, you can then "start-over" using your preferred
platform.

2.6.3. Deploy on your own platform

The programming model defined by Apache Isis deliberately minimizes the dependencies on the
rest of the framework. In fact, the only hard dependency that the domain model classes have on
Apache Isis is through the org.apache.isis.applib classes, mostly to pick up annotations such as
@Disabled. So, if you have used Apache Isis for prototyping (discussed above), then note that itÕs
quite feasible to take your domain model a the basis of your actual development effort; Apache Isis'
annotations and programming conventions will help ensure that any subtle semantics you might
have captured in your prototyping are not lost.

If you go this route, your deployment platform will of course need to provide similar capabilities to
Apache Isis. In particular, youÕll need to figure out a way to inject domain services into domain
entities (eg using a JPA listener), and youÕll also need to reimplement any domain services you have
used that Apache Isis provides "out-of-the-box" (eg QueryResultsCache domain service).

2.6.4. Deploy the REST API

REST (Representation State Transfer) is an architectural style for building highly scalable
distributed systems, using the same principles as the World Wide Web. Many commercial web APIs
(twitter, facebook, Amazon) are implemented as either pure REST APIs or some approximation
therein.

The Restful Objects specification defines a means by a domain object model can be exposed as
RESTful resources using JSON representations over HTTP. Apache Isis' RestfulObjects viewer is an
implementation of that spec, making any Apache Isis domain object automatically available via
REST.

There are a number of use cases for deploying Isis as a REST API, including:

¥ to allow a custom UI to be built against the RESTful API

For example, using AngularJS or some other RIA technology such as Flex, JavaFX, Silverlight

¥ to enable integration between systems

REST is designed to be machine-readable, and so is an excellent choice for synchronous data

28

rgsvc.pdf#_rgsvc_api_QueryResultsCache
http://restfulobjects.org
ugvro.pdf

interchange scenarios.

¥ as a ready-made API for migrating data from one legacy system to its replacement.

As for the auto-generated webapps, the framework manages object persistence. It is perfectly
possible to deploy the REST API alongside an auto-generated webapp; both work from the same
domain object model.

2.6.5. Implement your own viewer

Isis' architecture was always designed to support multiple viewers; and indeed Apache Isis out-of-
the-box supports two: the Wicket viewer, and the Restful Objects viewer (or three, if one includes
the Wrapper Factory).

While we mustnÕt understate the effort involved here, it is feasible to implement your own viewers
too. Indeed, one of Apache Isis' committers does indeed have a (closed source) viewer, based on
Wavemaker .

29

http://www.wavemaker.com/

Chapter 3. Getting Started
To get you up and running quickly, Apache Isis provides a SimpleApp archetype to setup a simple
application as the basis of your own apps. This is deliberately very minimal so that you wonÕt have
to spend lots of time removing generated artifacts. On the other hand, it does set up a standard
multi-module maven structure with unit- and integration tests pre-configured, as well as a webapp
module so that you can easily run your app. We strongly recommend that you preserve this
structure as you develop your own Isis application.

In this chapter we also discuss the DataNucleus enhancer . DataNucleus is the reference
implementation of the JDO (Java data objects) spec, and Apache Isis integrates with DataNucleus as
its persistence layer. The enhancer performs post-processing on the bytecode of your persistent
domain entities, such that they can be persisted by Apache Isis' JDO/DataNucleus objectstore.

"
The SimpleApp archetype automatically configures the enhancer, so thereÕs little
you need to do at this stage. Even so we feel itÕs a good idea to be aware of this
critical part of Apache Isis runtime; if the enhancer does not run, then youÕll find
the app fails to start with (what will seem like) quite an obscure exception
message.

3.1. Prerequisites
Apache Isis is a Java based framework, so in terms of prerequisites, youÕll need to install:

¥ Java 7 or 8 JDK

¥ Apache Maven 3.0.5 or later

YouÕll probably also want to use an IDE; the Apache Isis committers use either IntelliJ or Eclipse; in
the Developers' Guide we have detailed setup instructions for using these two IDEs. If youÕre a
NetBeans user you should have no problems as it too has strong support for Maven.

When building and running within an IDE, youÕll also need to configure the Datanucleus enhancer.
This is implemented as a Maven plugin, so in the case of IntelliJ, itÕs easy enough to run the
enhancer as required. It should be just as straightforward for NetBeans too.

For Eclipse the maven integration story is a little less refined. All is not lost, however; DataNucleus
also has an implementation of the enhancer as an Eclipse plugin, which usually works well enough.

3.2. SimpleApp Archetype
The quickest way to get started with Apache Isis is to run the simple archetype. This will generate a
very simple one-class domain model, called SimpleObject, with a single property name.

There is also a corresponding SimpleObjects domain service which acts as a repository for
SimpleObject entity. From this you can easily rename these initial classes, and extend to build up
your own Apache Isis domain application.

30

http://www.datanucleus.org/
http://maven.apache.org
dg.pdf#_dg_ide

Finally, the domain service also includes a HomePageViewModel which acts as a home page for the app.

3.2.1. Generating the App

Create a new directory, and cd into that directory.

To build the app from the latest stable release, then run the following command:

mvn archetype:generate \
Ê -D archetypeGroupId=org.apache.isis.archetype \
Ê -D archetypeArtifactId =simpleapp-archetype \
Ê -D archetypeVersion =1.13.1 \
Ê -D groupId=com.mycompany \
Ê -D artifactId =myapp \
Ê -D version =1.0-SNAPSHOT \
Ê -B

where:

¥ groupId represents your own organization, and

¥ artifactId is a unique identifier for this app within your organization.

¥ version is the initial (snapshot) version of your app

The archetype generation process will then run; it only takes a few seconds.

We also maintain the archetype for the most current -SNAPSHOT; an app generated with this
archetype will contain the latest features of Apache Isis, but the usual caveats apply: some features
still in development may be unstable.

The process is almost identical to that for stable releases, however the archetype:generate goal is
called with slightly different arguments:

mvn archetype:generate \
Ê -D archetypeGroupId=org.apache.isis.archetype \
Ê -D archetypeArtifactId =simpleapp-archetype \
Ê -D archetypeVersion =1.14.0-SNAPSHOT \
Ê -D groupId=com.mycompany \
Ê -D artifactId =myapp \
Ê -D version =1.0-SNAPSHOT \
Ê -D archetypeRepository =http://repository-estatio.forge.cloudbees.com/snapshot/ \
Ê -B

where as before:

¥ groupId represents your own organization, and

¥ artifactId is a unique identifier for this app within your organization.

¥ version is the initial (snapshot) version of your app

31

but also:

¥ archetypeVersion is the SNAPSHOT version of Apache Isis.

¥ archetypeRepository specifies the location of our snapshot repo (hosted on CloudBees), and

The archetype generation process will then run; it only takes a few seconds.

3.2.2. Building the App

Switch into the root directory of your newly generated app, and build your app:

cd myapp
mvn clean install

where myapp is the artifactId entered above.

3.2.3. Running the App

The simpleapp archetype generates a single WAR file, configured to run both the Wicket viewer and
the Restful Objects viewer . The archetype also configures the DataNucleus/JDO Objectstore to use
an in-memory HSQLDB connection.

Once youÕve built the app, you can run the WAR in a variety of ways.

Using mvn Jetty plugin

First, you could run the WAR in a Maven-hosted Jetty instance, though you need to cd into the
webapp module:

cd webapp
mvn jetty:run

You can also provide a system property to change the port:

cd webapp
mvn jetty:run -D jetty.port =9090

Using a regular servlet container

You can also take the built WAR file and deploy it into a standalone servlet container such as
[Tomcat](http://tomcat.apache.org). The default configuration does not require any configuration of
the servlet container; just drop the WAR file into the webapps directory.

From within the IDE

Most of the time, though, youÕll probably want to run the app from within your IDE. The mechanics
of doing this will vary by IDE; see the Developers' Guide for details of setting up Eclipse or IntelliJ

32

http://www.cloudbees.com
ugvw.pdf
ugvro.pdf
http://tomcat.apache.org
dg.pdf#_dg_ide

IDEA. Basically, though, it amounts to running org.apache.isis.WebServer , and ensuring that the
DataNucleus enhancer has properly processed all domain entities.

HereÕs what the setup looks like in IntelliJ IDEA:

3.2.4. Running with Fixtures

It is also possible to start the application with a pre-defined set of data; useful for demos or manual
exploratory testing. This is done by specifying a fixture script on the command line.

If you are running the app from an IDE, then you can specify the fixture script using the --fixture
flag. The archetype provides the domainapp.fixture.scenarios.RecreateSimpleObjects fixture script,
for example:

33

images/getting-started/simpleapp-webapp.png
ugtst.pdf#_ugtst_fixture-scripts

Alternatively, you can run with a different AppManifest using the --appManifest (or -m) flag. The
archetype provides domainapp.app.DomainAppAppManifestWithFixtures which specifies the
aforementioned RecreateSimpleObjects fixture.

3.2.5. Using the App

" These screenshots are for v1.10.0.

When you start the app, youÕll be presented with a welcome page from which you can access the
webapp using either the Wicket viewer or the Restful Objects viewer :

34

images/getting-started/simpleapp-webapp-with-fixtures.png
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugvw.pdf
ugvro.pdf

The Wicket viewer provides a human usable web UI (implemented, as you might have guessed
from its name, using Apache Wicket), so choose that and navigate to the login page:

The app itself is configured to run using shiro security , as configured in the WEB-INF/shiro.ini
config file. You can login with:

¥ username: sven

35

images/getting-started/using-simple-app/010-root-page.png
http://wicket.apache.org
images/getting-started/using-simple-app/020-login-to-wicket-viewer.png
ugsec.pdf

¥ password: pass

The application is configured to run with an in-memory database, and (unless you started the app
with fixture scripts as described above), initially there is no data. We can though run a fixture
script from the app itself:

The fixture script creates three objects, and the action returns the first of these:

36

images/getting-started/using-simple-app/030-home-page-run-fixture-scripts.png
images/getting-started/using-simple-app/040-first-object.png

The application generated is deliberaetly very minimal; we donÕt want you to have to waste
valuable time removing generated files. The object contains a single "name" property, and a single
action to update that property:

When you hit OK, the object is updated:

For your most signficant domain entities youÕll likely have a domain service to retrieve or create
instances of those obejcts. In the generated app we have a "Simple Objects" domain service that lets

37

images/getting-started/using-simple-app/050-update-name-prompt.png
images/getting-started/using-simple-app/060-object-updated.png

us list all objects:

whereby we see the three objects created by the fixture script (one having been updated):

and we can also use the domain service to create new instances:

38

images/getting-started/using-simple-app/070-list-all-prompt.png

