
Beyond the Basics

Table of Contents
1. Beyond the Basics . Ê1

1.1. Other Guides . Ê1

2. View Models . Ê2

2.1. Use Cases . Ê2

2.2. Programming Model . Ê5

2.3. JAXB-annotated DTOs . Ê7

3. Decoupling . Ê16

3.1. Database Schemas . Ê16

3.2. Mixins . Ê18

3.3. Contributions . Ê24

3.4. Vetoing Visibility . Ê25

3.5. Event Bus . Ê26

3.6. Pushing Changes . Ê26

4. i18n . Ê29

4.1. Implementation Approach . Ê29

4.2. TranslationService . Ê30

4.3. Imperative messages . Ê31

4.4. Wicket Viewer . Ê33

4.5. Integration Testing . Ê38

4.6. Escaped strings . Ê39

4.7. Configuration . Ê40

4.8. Supporting services . Ê41

5. Headless access . Ê43

5.1. AbstractIsisSessionTemplate . Ê43

5.2. BackgroundCommandExecution . Ê44

6. Other Techniques . Ê47

6.1. Mapping RDBMS Views . Ê47

6.2. Transactions and Errors . Ê47

6.3. Multi-tenancy . Ê48

6.4. Persisted Title . Ê48

6.5. Overriding Default Service Implns . Ê50

7. Customizing the Prog Model . Ê53

7.1. Custom validator . Ê53

7.2. Finetuning . Ê55

7.3. Layout Metadata Reader . Ê56

8. Deployment . Ê59

8.1. Command Line (WebServer) . Ê59

8.2. Deploying to Tomcat . Ê60

8.3. Externalized Configuration . Ê61

8.4. Docker . Ê65

8.5. Deploying to Google App Engine . Ê67

8.6. Neo4J. Ê68

8.7. JVM Flags . Ê69

9. web.xml . Ê71

9.1. Servlet Context Listeners . Ê73

9.2. Servlets . Ê75

9.3. Filters . Ê76

9.4. Configuration Files . Ê83

Chapter 1. Beyond the Basics
This guide provides more advanced guidance on writing maintainable larger applications.

Later chapters discuss how to deploy your app, and discuss other ways in which you can extend or
adapt the framework itself to your particular needs.

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

¥ Fundamentals

¥ Wicket viewer

¥ Restful Objects viewer

¥ DataNucleus object store

¥ Security

¥ Testing

¥ Beyond the Basics (this guide)

The reference guides are:

¥ Annotations

¥ Domain Services

¥ Configuration Properties

¥ Classes, Methods and Schema

¥ Apache Isis Maven plugin

¥ Framework Internal Services

The remaining guides are:

¥ Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

¥ Committers' Guide (release procedures and related practices)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugdno.pdf
ugsec.pdf
ugtst.pdf
rgant.pdf
rgsvc.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. View Models
View models are a type of domain object (with state, behaviour etc) but where the state is not
persisted into the JDO/DataNucleus-managed database, but is instead converted to/from a string
memento, and held by the calling client. This opens up a number of more advanced use cases.

In this topic weÕll explore those use cases, and learn the programming model and conventions to
use view models in your application.

2.1. Use Cases
When developing an Apache Isis application you will most likely start off with the persistent
domain entities: Customer, Order, Product, and so on. For some applications this may well suffice.
However, if the application needs to integrate with other systems, or if the application needs to
support reasonably complex business processes, then you may need to look beyond just domain
entities. This section explores these use cases.

2.1.1. Externally-managed entities

Sometimes the entities that make up your application are persisted not in the local
JDO/DataNucleus database but reside in some other system, for example accessible only through a
SOAP web service. Logically that data might still be considered a domain entity and we might want
to associate behaviour with it, however it cannot be modelled as a domain entity if only because
JDO/DataNucleus doesnÕt know about the entity nor how to retrieve or update it.

There are a couple of ways around this: we could either replicate the data somehow from the
external system into the Isis-managed database (in which case it is once again just another domain
entity), or we could set up a stub/proxy for the externally managed entity. This proxy would hold
the reference to the externally-managed domain entity (eg an external id), as well as the "smarts"
to know how to interact with that entity (by making SOAP web service calls etc).

The stub/proxy is a type of view model: a view - if you like - onto the domain entity managed by the
external system.

!

DataNucleus does in fact define its own Store Manager extension point, so an
alternative architecture would be to implement this interface such that
DataNucleus could make the calls to the external system; these externally-
persisted domain entities would therefore be modelled as regular
@PersistenceCapable entities after all. For entities not persisted externally the
implementation would delegate down to the default RDBMS-specific StoreManager
provided by DataNucleus itself.

An implementation that supported only reading from an external entity ought to
be comparatively straight-forward, but implementing one that also supported
updating external entities would need to carefully consider error conditions if the
external system is unavailable; distributed transactions are most likely
difficult/impossible to implement (and not desirable in any case).

2

http://www.datanucleus.org/documentation/extensions/store_manager.html

2.1.2. In-memory entities

As a variation on the above, sometimes there are domain objects that are, conceptually at least
entities, but whose state is not actually persisted anywhere, merely held in-memory (eg in a hash).

A simple example might be read-only configuration data that is read from a config file (eg log4j
appender definitions) but thereafter is presented in the UI just like any other entity.

2.1.3. Application-layer view models

Domain entities (whether locally persisted using JDO/DataNucleus or managed externally) are the
bread-and-butter of Apache Isis applications: the focus after all, should be on the business domain
concepts and ensuring that they are solid. Generally those domain entities will make sense to the
business domain experts: they form the ubiquitous language of the domain. These domain entities
are part of the domain layer.

That said, it may not always be practical to expect end-users of the application to interact solely
with those domain entities. For example, it may be useful to show a dashboard of the most
significant data in the system to a user, often pulling in and aggregating information from multiple
points of the app. Obtaining this information by hand (by querying the respective
services/repositories) would be tedious and slow; far better to have a dashboard do the job for the
end user.

A dashboard object is a model of the most relevant state to the end-user, in other words it is (quite
literally) a view model. It is not a persisted entity, instead it belongs to the application layer.

A view model need not merely aggregate data; it could also provide actions of its own. Most likely
these actions will be queries and will always ultimately just delegate down to the appropriate
domain-layer service/repository. But in some cases such view model actions might also modify
state of underlying domain entities.

Another common use for view models is to help co-ordinate complex business processes; for
example to perform a quarterly invoicing run, or to upload annual interest rates from an Excel
spreadsheet. In these cases the view model might have some state of its own, but in most cases that
state does not need to be persisted per se.

3

Desire Lines

One way to think of application view models is as modelling the "desire line": the commonly-
trod path that end-users must follow to get from point A to point B as quickly as possible.

To explain: there are documented examples that architects of university campus will only
add in paths some while after the campus buildings are complete: let the pedestrians figure
out the routes they want to take. The name we like best for this idea is "desire lines", though
it has also been called a "desire path", "paving the path" or "paving the sidewalk".

What that means is you should add view models after having built up the domain layer,
rather than before. These view models pave that commonly-trod path, automating the steps
that the end-user would otherwise have to do by hand.

It takes a little practice though, because even when building the domain layer "first", you
should still bear in mind what the use cases are that those domain entities are trying to
support. You certainly shouldnÕt try to build out a domain layer that could support every
conceivable use case before starting to think about view models.

Instead, you should iterate. Identify the use case/story/end-user objective that you will
deliver value to the business. Then build out the minimum domain entities to support that
use case (refining the ubiquitous language as you go). Then, identify if there any view models
that could be introduced which would simplify the end-user interactions with the system
(perhaps automating several related use cases together).

2.1.4. DTOs

DTOs (data transfer objects) are simple classes that (according to wikipedia) "carry data between
processes".

If those two processes are parts of the same overall application (the same team builds and deploys
both server and client) then thereÕs generally no need to define a DTO; just access the entities using
Apache Isis' RestfulObjects viewer .

On the other hand, if the client consuming the DTO is a different application!Ñ!by which we mean
developed/deployed by a different (possible third-party) team!Ñ!then the DTOs act as a formal
contract between the provider and the consumer. In such cases, exposing domain entities over
RestfulObjects would be "A Bad Thing"ª because the consumer would in effect have access to
implementation details that could then not be easily changed by the producer.

To support this use case, a view model can be defined such that it can act as a DTO. This is done by
annotating the class using JAXB annotations; this allows the consumer to obtain the DTO in XML
format along with a corresponding XSD schema describing the structure of that XML. A discussion
of how that might be done using an ESB such as Apache Camelª follows below .

In case itÕs not obvious, these DTOs are still usable as "regular" view models; they will render in the
Wicket viewer just like any other. In fact (as the programming model section below makes clear),
these JAXB-annotated view models are in many regards the most powerful of all the alternative

4

http://ask.metafilter.com/62599/Where-the-sidewalk-ends
https://sivers.org/walkways
http://www.softpanorama.org/People/Wall/larry_wall_articles_and_interviews.shtml
ugfun.pdf#_ugfun_core-concepts_philosophy_domain-driven-design_ubiquitous-language
https://en.wikipedia.org/wiki/Data_transfer_object
ugvro.pdf
ugvro.pdf
http://camel.apache.org
ugvw.pdf

ways of writing view models.

ItÕs also worth noting that it is also possible to download the XML (or XSD) straight from the UI,
useful during development. The view model simply needs to implement the Dto marker interface;
the framework has mixins that contribute the download actions to the view model.

DTO Consumers

The actual consumers of DTOs will generally obtain the XML of the view models either by
requesting the XML directly, eg using the RestfulObjects viewer , or may have the XML sent to them
asynchronously using an ESB such as Apache Camel.

In the former case, the consumer requests the DTO by calling the REST API with the appropriate
HTTP Accept header. An appropriate implementation of ContentMappingService can then be used to
return the appropriate DTO (as XML).

For the latter case, one design is simply for the application to instantiate the view model, then call
the JaxbService to obtain its corresponding XML. This can then be published onto the ESB, for
example using an Apache ActiveMQ ª queue.

However, rather than try to push all the data that might be needed by any of these external systems
in a single XML event (which would require anticipating all the requirements, likely a hopeless
task), a better design is to publish only the fact that something of note has changed - ie, that an
action on a domain object has been invoked - and then let the consumers call back to obtain other
information if required. This can once again be done by calling the REST API with an appropriate
HTTP Accept header.

"
This is an example of the VETRO pattern (validate, enrich, transform, route,
operate). In our case we focus on the validation (to determine the nature of the
inbound message, ie which action was invoked), and the enrich (callback to
obtain a DTO with additional information required by the consumer).

The (non-ASF) Isis addons' publishmq module provides an out-of-the-box solution of this design. It
provides an implementation of the PublishingService , but which simply publishes instances of
ActionInvocationMemento to an ActiveMQ queue. Camel (or similar) can then be hooked up to
consume these events from this queue, and use a processor to parse the action memento to
determine what has changed on the source system. Thereafter, a subsequent Camel processor can
then call back to the source - via the Restful Objects viewer - to enrich the message with additional
details using a DTO.

2.2. Programming Model
So much for the theory; how should view models be implemented? Fundamentally all view models'
state is serialized into a string memento; this memento is then held by the client (browser) in the
form of a URL. As you might imagine, this URL can become quite long, but Apache Isis offers a
mechanism (the UrlEncodingService) if it exceeds the maximum length for a URL (2083 characters).
Also, of course, this string memento must only contain characters that it is valid for use within a
URL.

5

rgcms.pdf#_rgcms_classes_mixins_Dto
rgcms.pdf#_rgcms_classes_mixins_Dto
ugvro.pdf
rgsvc.pdf#_rgsvc_spi_ContentMappingService
rgsvc.pdf#_rgsvc_api_JaxbService
http://activemq.apache.org
https://leanpub.com/camel-design-patterns
http://github.com/isisaddons/isis-module-publishmq
rgsvc.pdf#_rgsvc_spi_PublishingService
rgcms.pdf#_rgcms_schema-aim
rgsvc.pdf#_rgsvc_spi_UrlEncodingService

While the underlying technique is the same irrespective of use case, the programming model
provides various ways of defining a view model so that the original intent is not lost. They are:

Table 1. View model programming model

Use case Code Description

External
entity

[source,java] ----
@DomainObject(nature=Nature.EXTERNAL_ENTITY)
public class CustomerRecordOnSAP { É } ----

Annotated with
@DomainObject#nature() and
a nature of
EXTERNAL_ENTITY, with
memento derived
automatically from the
properties of the domain
object. Collections are
ignored, as are any
properties annotated as
not persisted .

In-memory
entity

[source,java] ----
@DomainObject(nature=Nature.INMEMORY_ENTITY)
public class Log4JAppender { É } ----

As preceding, but using a
nature of INMEMORY_ENTITY.

Application
view model

[source,java] ----
@DomainObject(nature=Nature.VIEW_MODEL) public
class Dashboard { É } ----

As preceding, but using a
nature of VIEW_MODEL.

Application
view model

[source,java] ---- @ViewModel public class Dashboard {
É } ----

Annotated with @ViewModel
annotation (effectively just
an alias)' memento is as
preceding: from "persisted"
properties, collections
ignored

Application
view model

[source,java] ---- public class ExcelUploadManager
implements ViewModel { public String
viewModelMemento() { É } public void
viewModelInit(String memento) { É } }

Implement ViewModel
interface. The memento is
as defined by the
interfaceÕs methods: the
programmer has full
control (but also full
responsibility) for the
string memento.

6

rgant.pdf#_rgant-DomainObject_nature
rgant.pdf#_rgant-Property_notPersisted
rgant.pdf#_rgant-ViewModel
rgcms.pdf#_rgcms_classes_super_ViewModel

Use case Code Description

DTO [source,java] ---- @XmlRootElement("customer") public
class CustomerDto { É } ----

Annotate using JAXB <a
href="rgant.pdf#rgan
t-
XmlRootElement"><code>
@XmlRootElement</code>
 annotation. Memento
derived automatically by
serializing the XML graph
as implied by the JAXB
annotations. Note that
(unlike
<code>@ViewModel</code
> et al) this state _can
include collections.

JAXB-annotated DTOs are discussed in more detail immediately below .

2.3. JAXB-annotated DTOs
As noted in the introduction , view models can also be defined using JAXB annotations. The
serialized form of these view models is therefore XML, which also enables these view models to act
as DTOs.

In case itÕs not obvious, these DTOs are still usable as "regular" view models; they will render in the
Wicket viewer just like any other. In fact, these JAXB-annotated view models are in many regards
the most powerful of all the various ways of writing view models:

¥ their entire state (collections as well as properties) is automatically managed from interaction to
interaction.

In contrast, using @ViewModel (or its @DomainObject#nature() equivalent) will only manage the
state of properties, but not collections. And if using the ViewModel interface, then the
programmer must write all the state management (lots of boilerplate).

¥ JAXB-annotated view models are editable.

The examples in this section uses the DTO for ToDoItem, taken from the (non-ASF) Isis addons'
todoapp . This DTO is defined as follows:

7

rg.pdf#_ugbtb_view-models_jaxb
ugvw.pdf
rgant.pdf#_rgant-ViewModel
rgant.pdf#_rgant-DomainObject_nature
rgcms.pdf#_rgcms_classes_super_ViewModel
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp

package todoapp. app. viewmodels. todoitem . v1; !
@XmlRootElement(name = "toDoItemDto") "
@XmlType(
Ê propOrder = { #
Ê "majorVersion" , "minorVersion" ,
Ê "description" , "category" , ...
Ê "toDoItem" , "similarItems"
Ê }
)
@DomainObjectLayout(
Ê titleUiEvent = TitleUiEvent . Doop. class $
)
public class ToDoItemV1_1 implements Dto { %
Ê @XmlElement(required = true , defaultValue = "1") &
Ê public final String getMajorVersion () { return "1" ; }
Ê @XmlElement(required = true , defaultValue = "1") '
Ê public String getMinorVersion () { return "1" ; }

Ê @XmlElement(required = true) (
Ê @Getter @Setter
Ê protected String description ;
Ê @XmlElement(required = true)
Ê @Getter @Setter
Ê protected String category ;
Ê ...

Ê @Getter @Setter)
Ê protected ToDoItem toDoItem;
Ê @XmlElementWrapper *
Ê @XmlElement(name = "todoItem")
Ê @Getter @Setter
Ê protected List <ToDoItem> similarItems = Lists . newArrayList ();
}

! package name encodes major version; see discussion on versioning

" identifies this class as a view model and defines the root element for JAXB serialization

all properties in the class must be listed; (they can be ignored using @XmlTransient)

$ demonstrating use of UI events for a subscriber to provide the DTOÕs title; see
@DomainObjectLayout#titleUiEvent() .

% class name encodes (major and) minor version; see discussion on versioning

& again, see discussion on versioning

' again, see discussion on versioning

(simple scalar properties

) reference to a persistent entity; discussed below

* reference to a collection of persistent entities; again discussed below

8

rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent

2.3.1. Referencing Domain Entities

ItÕs quite common for view models to be "backed by" (be projections of) some underlying domain
entity. The ToDoItemDto weÕve been using as the example in this section is an example: there is an
underlying ToDoItem entity.

It wouldnÕt make sense to serialize out the state of a persistent entity: the point of a DTO is to act as
a facade on top of the entity so that the implementation details (of the entityÕs structure) donÕt leak
out to the consumer. However, the identity of the underlying entity can be well defined; Apache Isis
defines the Common schema which defines the <oid-dto> element (and corresponding OidDto class):
the objectÕs type and its identifier. This is basically a formal XML equivalent to the Bookmark object
obtained from the BookmarkService.

There is only one requirement to make this work: every referenced domain entity must be
annotated with @XmlJavaTypeAdapter, specifying the framework-provided
PersistentEntityAdapter.class . This class is similar to the BookmarkService: it knows how to create
an OidDto from an object reference.

Thus, in our view model we can legitimately write:

package todoapp. app. viewmodels. todoitem . v1;
...
public class ToDoItemV1_1 implements Dto {
Ê ...
Ê @Getter @Setter
Ê protected ToDoItem toDoItem;
}

All we need to do is remember to add that @XmlJavaTypeAdapter annotation to the referenced entity:

@XmlJavaTypeAdapter(PersistentEntityAdapter . class)
public class ToDoItem ... {
Ê ...
}

ItÕs also possible for a DTO to hold collections of objects. These can be of any type, either simple
properties, or references to other objects. The only bit of boilerplate that is required is the
@XmlElementWrapper annotation. This instructs JAXB to create an XML element (based on the field
name) to contain each of the elements. (If this is omitted then the contents of the collection are at
the same level as the properties; almost certainly not what is required).

For example, the DTO also contains:

9

rgcms.pdf#_rgcms_schema-common
rgsvc.pdf#_rgsvc_api_BookmarkService
rgant.pdf#_rgant-XmlJavaTypeAdapter

package todoapp. app. viewmodels. todoitem . v1;
...
public class ToDoItemV1_1 implements Dto {
Ê ...
Ê @XmlElementWrapper
Ê @XmlElement(name = "todoItem")
Ê @Getter @Setter
Ê protected List <ToDoItem> similarItems = Lists . newArrayList ();
}

ThereÕs nothing to prevent a JAXB DTO from containing rich graphs of data, parent containing
children containing children. Be aware though that all of this state will become the DTOÕs
memento, ultimately converted into a URL-safe form, by way of the UrlEncodingService .

There are limits to the lengths of URLs, however. Therefore the DTO should not include state that
can easily be derived from other information. If the URL does exceed limits, then provide a custom
implementation of UrlEncodingService to handle the memento string in some other fashion (eg
substituting it with a GUID, with the memento cached somehow on the server).

2.3.2. Versioning

The whole point of using DTOs (in Apache Isis, at least) is to define a formal contact between two
inter-operating but independent applications. Since the only thing we can predicate about the
future with any certainty is that it one or both of these applications will change, we should version
DTOs from the get-go. This allows us to make changes going forward without unnecessarily
breaking existing consumers of the data.

! There are several ways that versioning might be accomplished; we base our
guidelines on this article taken from Roger CostelloÕs blog, well worth a read.

We can distinguish two types of changes:

¥ backwardly compatible changes

¥ breaking changes.

We can immediately say that the XSD namespace should change only when there is a
major/breaking change, if following semantic versioning that means when we bump the major
version number v1, v2, etc.

XML namespaces correspond (when using JAXB) to Java packages. We should therefore place our
DTOs in a package that contains only the major number; this package will eventually contain a
range of DTOs that are intended to be backwardly compatible with one another. The package
should also have a package-info.java ; it is this that declares the XSD namespace:

10

rgsvc.pdf#_rgsvc_spi_UrlEncodingService
rgsvc.pdf#_rgsvc_spi_UrlEncodingService
http://www.xfront.com/Versioning.pdf
http://semver.org

@javax. xml. bind. annotation . XmlSchema(
Ê namespace = "http://viewmodels.app.todoapp/todoitem/v1/Dto.xsd" , !
Ê xmlns = {
Ê @javax. xml. bind. annotation . XmlNs(
Ê namespaceURI = "http://isis.apache.org/schema/common" ,
Ê prefix = "com"
Ê)
Ê },
Ê elementFormDefault = javax . xml. bind. annotation . XmlNsForm. QUALIFIED
)
package todoapp. app. viewmodels. todoitem . v1; "

! the namespace URI, used by the DTO residing in this package.

" the package in which the DTO resides. Note that this contains only the major version.

Although there is no requirement for the namespace URI to correspond to a physical URL, it should
be unique. This usually means including a company domain name within the string.

As noted above, this package will contain multiple DTO classes all with the same namespace; these
represent a set of minor versions of the DTO, each subsequent one intended to be backwardly
compatible with the previous. Since these DTO classes will all be in the same package (as per the
advice above), the class should therefore include the minor version name:

package todoapp. app. viewmodels. todoitem . v1; !
...
public class ToDoItemV1_1 implements Dto { "
Ê ...
}

! package contains the major version only

" DTO class contains the (major and) minor version

We also recommend that each DTO instance should also specify the version of the XSD schema that
it is logically compatible with. Probably most consumers will not persist the DTOs; they will be
processed and then discarded. However, it would be wrong to assume that is the case in all cases;
some consumers might choose to persist the DTO (eg for replay at some later state).

Thus:

public class ToDoItemV1_1 implements Dto {
Ê @XmlElement(required = true , defaultValue = "1")
Ê public final String getMajorVersion () { return "1" ; } !
Ê @XmlElement(required = true , defaultValue = "1")
Ê public String getMinorVersion () { return "1" ; } "
Ê ...
}

11

! returns the major version (in sync with the package)

" returns the minor version (in sync with the class name)

These methods always return a hard-coded literal. Any instances serialized from these classes will
implicitly "declare" the (major and) minor version of the schema that they are compatible with. If
a consumer has a minimum version that it requires, it can therefore inspect the XML instance itself
to determine if it is able to consume said XML.

If a new (minor) version of a DTO is required, then we recommend copying-and-pasting the
previous version, eg:

public class ToDoItemV1_2 implements Dto {
Ê @XmlElement(required = true , defaultValue = "1")
Ê public final String getMajorVersion () { return "1" ; }
Ê @XmlElement(required = true , defaultValue = "2")
Ê public String getMinorVersion () { return "2" ; }
Ê ...
}

Obviously, only changes made must be backward compatible, eg new members must be optional.

Alternatively, you might also consider simply editing the source file, ie renaming the class and
bumping up the value returned by getMinorVersion() .

We also donÕt recommend using inheritance (ie ToDoItemV1_2 should not inherit from ToDoItemV1_1;
this creates unnecessary complexity downstream if generating XSDs and DTOs for the downstream
consumer.

2.3.3. Generating XSDs and DTOs

In the section above it was explained how a view model DTO can transparent reference any
"backing" entities; these references are converted to internal object identifiers.

However, if the consumer of the XML is another Java process (eg running within an Apache Camel
route), then you might be tempted/expect to be able to use the same DTO within that Java process.
After a little thought though youÕll realize that (duh!) of course you cannot; the consumer runs in a
different process space, and will not have references to those containing entities.

There are therefore two options:

¥ either choose not to have the view model DTO reference any persistent entities, and simply limit
the DTO to simple scalars.

Such a DTO will then be usable in both the Apache Isis app (to generate the original XML) and in
the consumer. The BookmarkService can be used to obtain the object identifiers

¥ alternatively, generate a different DTO for the consumer from the XSD of the view model DTO.

The (non-ASF) Isis addons' todoapp uses the second approach; generating the XSD and consumerÕs

12

rgsvc.pdf#_rgsvc_api_BookmarkService
http://github.com/isisaddons/isis-app-todoapp

DTO is mostly just boilerplate pom.xml file. In the todoapp this can be found in the todoapp-xsd
Maven module, whose pom.xml is structured as two profiles:

<project ... >
Ê <artifactId> todoapp-xsd</artifactId>
Ê <dependencies>
Ê <dependency>
Ê <groupId>${project.groupId} </groupId>
Ê <artifactId> todoapp-app</artifactId>
Ê </dependency>
Ê </dependencies>
Ê <profiles>
Ê <profile>
Ê <id>isis-xsd </id>
Ê <activation>
Ê <property>
Ê <name>!skip.isis-xsd </name>
Ê </property>
Ê </activation>
Ê ...
Ê </profile>
Ê <profile>
Ê <id>xjc </id>
Ê <activation>
Ê <property>
Ê <name>!skip.xjc </name>
Ê </property>
Ê </activation>
Ê ...
Ê </profile>
Ê </profiles>
</project>

The isis-xsd profile generates the XSD using the xsd goal of Isis' maven plugin:

<build>
Ê <plugins>
Ê <plugin>
Ê <groupId>org.apache.isis.tool </groupId>
Ê <artifactId> isis-maven-plugin </artifactId>
Ê <version>${isis.version} </version>
Ê <configuration>
Ê <appManifest>todoapp.dom.ToDoAppDomManifest</appManifest>
Ê <jaxbClasses>
Ê <jaxbClass>
todoapp.app.viewmodels.todoitem.v1.ToDoItemV1_1</jaxbClass>
Ê </jaxbClasses>
Ê <separate>false </separate>
Ê <commonSchemas>false </commonSchemas>

13

rgmvn.pdf#_rgmvn_xsd
rgmvn.pdf#_rgmvn_xsd

Ê </configuration>
Ê <dependencies>
Ê <dependency>
Ê <groupId>${project.groupId} </groupId>
Ê <artifactId> todoapp-dom</artifactId>
Ê <version>${project.version} </version>
Ê </dependency>
Ê <dependency>
Ê <groupId>com.google.guava</groupId>
Ê <artifactId> guava</artifactId>
Ê <version>16.0.1 </version>
Ê </dependency>
Ê </dependencies>
Ê <executions>
Ê <execution>
Ê <phase>generate-sources </phase>
Ê <goals>
Ê <goal>xsd</goal>
Ê </goals>
Ê </execution>
Ê </executions>
Ê </plugin>
Ê <plugin>
Ê <artifactId> maven-assembly-plugin</artifactId>
Ê <version>2.5.3 </version>
Ê <configuration>
Ê <descriptor> src/assembly/dep.xml </descriptor>
Ê </configuration>
Ê <executions>
Ê <execution>
Ê <id>create-archive </id>
Ê <phase>package</phase>
Ê <goals>
Ê <goal>single </goal>
Ê </goals>
Ê </execution>
Ê </executions>
Ê </plugin>
Ê </plugins>
</build>

The todoapp.dom.ToDoAppDomManifest is a cut-down version of the app manifest that identifies only
the dom domain services.

The xjc profile, meanwhile, uses the maven-jaxb2-plugin (a wrapper around the schemagen JDK tool)
to generate a DTO from the XSD generated by the preceding profile:

<build>
Ê <plugins>
Ê <plugin>

14

Ê <groupId>org.jvnet.jaxb2.maven2 </groupId>
Ê <artifactId> maven-jaxb2-plugin </artifactId>
Ê <version>0.12.3 </version>
Ê <executions>
Ê <execution>
Ê <id>xjc-generate </id>
Ê <phase>generate-sources </phase>
Ê <goals>
Ê <goal>generate</goal>
Ê </goals>
Ê </execution>
Ê </executions>
Ê <configuration>
Ê <removeOldOutput>true </removeOldOutput>
Ê <schemaDirectory>
Ê target/generated-resources/isis-xsd/viewmodels.app.todoapp
Ê </schemaDirectory>
Ê <schemaIncludes>
Ê <schemaInclude>todoitem/v1/Dto.xsd </schemaInclude>
Ê </schemaIncludes>
Ê <bindingDirectory> src/main/resources </bindingDirectory>
Ê <bindingIncludes>
Ê <bindingInclude> binding.xml </bindingInclude>
Ê </bindingIncludes>
Ê <catalog>src/main/resources/catalog.xml </catalog>
Ê </configuration>
Ê </plugin>
Ê <plugin>
Ê <groupId>org.codehaus.mojo</groupId>
Ê <artifactId> build-helper-maven-plugin </artifactId>
Ê <version>1.9.1 </version>
Ê <executions>
Ê <execution>
Ê <id>add-source</id>
Ê <phase>generate-sources </phase>
Ê <goals>
Ê <goal>add-source</goal>
Ê </goals>
Ê <configuration>
Ê <sources>
Ê <source>target/generated-sources/xjc </source>
Ê </sources>
Ê </configuration>
Ê </execution>
Ê </executions>
Ê </plugin>
Ê </plugins>
</build>

15

Chapter 3. Decoupling
We use Java packages as a way to group related domain objects together; the package name forms a
namespace. We can then reason about all the classes in that package/namespace as a single unit, or
module.

This section describes how to use Apache Isis' features to ensure that your domain application
remains decoupled. The techniques described here are also the ones that have been adopted by the
various Isis Addons modules (not ASF) for security, commands, auditing etc.

The following sections describe how to re-assemble an application, in particular where some
modules are in-house but others are potentially third-party (eg the Isis Addons modules).

! There is some overlap with OSGi and Java 9Õs Jigsaw concepts of "module"; in the
future we expect to refactor Apache Isis to leverage these module systems.

3.1. Database Schemas
In the same way that Java packages act as a namespace for domain objects, itÕs good practice to map
domain entities to their own (database) schemas. As of 1.9.0, all the Isis Addons (non-ASF) modules
do this, for example:

@javax. jdo . annotations . PersistenceCapable(...
Ê schema = "isissecurity" ,
Ê table = "ApplicationUser")
public class ApplicationUser ... { ... }

results in a CREATE TABLE statement of:

CREATE TABLE isissecurity . "ApplicationUser" (
Ê ...
)

while:

@javax. jdo . annotations . PersistenceCapable(...
Ê schema = "isisaudit" ,
Ê table ="AuditEntry")
public class AuditEntry ... { ... }

similarly results in:

16

http://github.com/isisaddons
http://www.isisaddons.org

CREATE TABLE isisaudit . "AuditEntry" (
Ê ...
)

"
If for some reason you donÕt want to use schemas (though we strongly
recommend that you do), then note that you can override the @PersistenceCapable
annotation by providing XML metadata (the mappings.jdo file); see the section on
configuring DataNucleus Overriding Annotations for more details.

3.1.1. Listener to create schema

JDO/DataNucleus does not automatically create these schema objects, but it does provide a listener
callback API on the initialization of each class into the JDO metamodel.

"
Actually, the above statement isnÕt quite true. In DN 3.2.x (as used by Apache Isis
up to v1.8.0) there was no support for schemas. As of Apache Isis 1.9.0 and DN 4.0
there is now support. But we implemented this feature initially against DN 3.2.x,
and it still works, so for now weÕve decided to leave it in.

Therefore Apache Isis attaches a listener, CreateSchemaObjectFromClassMetadata, that checks for the
schemaÕs existence, and creates the schema if required.

The guts of its implementation is:

public class CreateSchemaObjectFromClassMetadata
Ê implements MetaDataListener ,
Ê DataNucleusPropertiesAware {
Ê @Override
Ê public void loaded(final AbstractClassMetaData cmd) { ... }

Ê protected String buildSqlToCheck(final AbstractClassMetaData cmd) {
Ê final String schemaName = schemaNameFor(cmd);
Ê return String . format (
Ê "SELECT count(*) FROM INFORMATION_SCHEMA.SCHEMATA where SCHEMA_NAME =
'%s'" , schemaName);
Ê }
Ê protected String buildSqlToExec(final AbstractClassMetaData cmd) {
Ê final String schemaName = schemaNameFor(cmd);
Ê return String . format ("CREATE SCHEMA \"%s\"", schemaName);
Ê }
}

where MetaDataListener is the DataNucleus listener API:

17

ugodn.pdf#_ugodn_configuring

public interface MetaDataListener {
Ê void loaded(AbstractClassMetaData cmd);
}

Although not formal API, the default CreateSchemaObjectFromClassMetadata has been designed to be
easily overrideable if you need to tweak it to support other RDBMS'. Any implementation must
implement org.datanucleus.metadata.MetaDataListener :

The implementation provided has has been tested for HSQLDB, PostgreSQL and MS SQL Server, and
is used automatically unless an alternative implementation is specified (as described in the section
below).

3.1.2. Alternative implementation

An alternative implementation can be registered and used through the following configuration
property:

isis.persistor.datanucleus.classMetadataLoadedListener =\
Ê
org.apache.isis.objectstore.jdo.datanucleus.CreateSchemaObjectFromClassMetadata

Because this pertains to the JDO Objectstore we suggest you put this configuration property in WEB-
INF/persistor_datanucleus.properties ; but putting it in isis.properties will also work.

Any implementation must implement org.datanucleus.metadata.MetaDataListener . In many cases
simply subclassing from CreateSchemaObjectFromClassMetadata and overriding buildSqlToCheck(É)
and buildSqlToExec(É) should suffice.

If you do need more control, your implementation can also optionally implement
org.apache.isis.objectstore.jdo.datanucleus.DataNucleusPropertiesAware :

public interface DataNucleusPropertiesAware {
Ê public void setDataNucleusProperties (final Map<String , String > properties);
}

This provides access to the properties passed through to JDO/DataNucleus.

If you do extend Apache Isis' CreateSchemaObjectFromClassMetadata class for some
other database, please contribute back your improvements.

3.2. Mixins
A mixin object allows one class to contribute behaviour - actions, (derived) properties and (derived)
collections - to another domain object, either a domain entity or view model.

Some programming languages use the term "trait" instead of mixin, and some languages (such as

18

https://issues.apache.org/jira/browse/ISIS

AspectJ) define their own syntax for defining such constructs. In Apache Isis a mixin is very similar
to a domain service, however it also defines a single 1-arg constructor that defines the type of the
domain objects that it contributes to.

Why do this? Two reasons:

¥ The main reason is to allow the app to be decoupled, so that it doesnÕt degrade into the
proverbial "big ball of mud" . Mixins (and contributions) allow dependency to be inverted, so
that the dependencies between modules can be kept acyclic and under control.

¥ However, there is another reason: mixins are also a convenient mechanism for grouping
functionality even for a concrete type, helping to rationalize about the dependency between the
data and the behaviour.

Both use cases are discussed below.

Syntactically, a mixin is defined using either the @Mixin annotation or using @DomainObject#nature()
attribute (specifying a nature of Nature.MIXIN).

3.2.1. Contributed Collection

The example below shows how to contribute a collection:

@Mixin
public class DocumentHolderDocuments {

Ê private final DocumentHolder holder ;
Ê public DocumentHolderDocuments(DocumentHolder holder) { this . holder = holder ; }

Ê @Action(semantics=SemanticsOf. SAFE) !
Ê @ActionLayout(contributed = Contributed . AS_ASSOCIATION) "
Ê @CollectionLayout(render = RenderType. EAGERLY)
Ê public List <Document> documents() { #
Ê ...
Ê }
Ê public boolean hideDocuments() { ... } $
}

! required; actions that have side-effects cannot be contributed as collections

" required; otherwise the mixin will default to being rendered as an action

must accept no arguments. The mixin is a collection rather than a property because the return
type is a collection, not a scalar.

$ supporting methods follow the usual naming conventions. (That said, in the case of collections,
because the collection is derived/read-only, the only supporting method that is relevant is
hideXxx()).

The above will result in a contributed collection for all types that implement/extend from
DocumentHolder (so is probably for a mixin across modules).

19

http://www.laputan.org/mud/mud.html#BigBallOfMud
rgant.pdf#_rgant_Mixin
rgant.pdf#_rgant_DomainObject_nature

3.2.2. Contributed Property

Contributed properties are defined similarly, for example:

@Mixin
public class DocumentHolderMostRecentDocument {

Ê private final DocumentHolder holder ;
Ê public DocumentHolderDocuments(DocumentHolder holder) { this . holder = holder ; }

Ê @Action(semantics=SemanticsOf. SAFE) !
Ê @ActionLayout(contributed = Contributed . AS_ASSOCIATION) "
Ê public Document> mostRecentDocument() { #
Ê ...
Ê }
Ê public boolean hideMostRecentDocument() { ... } $
}

! required; actions that have side-effects cannot be contributed as collections

" required; otherwise the mixin will default to being rendered as an action

must accept no arguments. The mixin is a property rather than a collection because the return
type is a scalar.

$ supporting methods follow the usual naming conventions. (That said, in the case of properties,
because the property is derived/read-only, the only supporting method that is relevant is
hideXxx()).

3.2.3. Contributed Action

Contributed properties are defined similarly, for example:

@Mixin
public class DocumentHolderAddDocument {

Ê private final DocumentHolder holder ;
Ê public DocumentHolderDocuments(DocumentHolder holder) { this . holder = holder ; }

Ê @Action()
Ê @ActionLayout(contributed = Contributed . AS_ACTION) !
Ê public Document> addDocument(Document doc) {
Ê ...
Ê }
Ê public boolean hideAddDocument() { ... } "
}

! recommended

" supporting methods follow the usual naming conventions.

20

3.2.4. Inferred Name

Where the mixin follows the naming convention SomeType_mixinName then the method name can be
abbreviated to "$$". The mixin name is everything after the last '_'.

For example:

@Mixin
public class DocumentHolder_documents {

Ê private final DocumentHolder holder ;
Ê public DocumentHolder_documents(DocumentHolder holder) { this . holder = holder ; }

Ê @Action(semantics=SemanticsOf. SAFE)
Ê @ActionLayout(contributed = Contributed . AS_ASSOCIATION)
Ê @CollectionLayout(render = RenderType. EAGERLY)
Ê public List <Document> $$() { !
Ê ...
Ê }
Ê public boolean hide$$() { ... } "
}

! using "$$" as the reserved method name

" supporting methods as usual

The character "$" is also recognized as a separator between the mixin type and mixin name. This is
useful for mixins implemented as nested static types, discussed below.

3.2.5. As Nested Static Classes

As noted in the introduction, while mixins were originally introduced as a means of allowing
contributions from one module to the types of another module, they are also a convenient
mechanism for grouping functionality/behaviour against a concrete type. All the methods and
supporting methods end up in a single construct, and the dependency between that functionality
and the rest of the object is made more explicit.

When using mixins in this fashion, it is idiomatic to write the mixin as a nested static class, using
the naming convention described above to reduce duplication.

For example:

21

public class Customer {

Ê @Mixin
Ê public static class placeOrder { !

Ê private final Customer customer;
Ê public documents(Customer customer) { this . customer = customer; } "

Ê @Action
Ê @ActionLayout(contributed = Contributed . AS_ACTION)
Ê public List <Order> $$(Product p, int quantity) { #
Ê ...
Ê }
Ê public boolean hide$$() { ... } $
Ê public String validate0 $$(Product p) { ... }
Ê }
}

! Prior to 1.13.2 , had to be prefixed by an "_"; this is no longer required because "$" is also
recognized as a way of parsing the class name in order to infer the mixinÕs name (eg
Customer$placeOrder).

" typically contributed to concrete class

using the "$$" reserved name

$ supporting methods as usual

Moreover, the mixin class can be capitalized if desired. Thus:

public class Customer {

Ê @Mixin
Ê public static class PlaceOrder { !

Ê private final Customer customer;
Ê public documents(Customer customer) { this . customer = customer; } "

Ê @Action
Ê @ActionLayout(contributed = Contributed . AS_ACTION)
Ê public List <Order> $$(Product p, int quantity) { #
Ê ...
Ê }
Ê public boolean hide$$() { ... } $
Ê public String validate0 $$(Product p) { ... }
Ê }
}

In other words, all of the following are allowed:

22

¥ public static class Documents { É }

¥ public static class documents { É }

¥ public static class _Documents { É }

¥ public static class _documents { É }

The reserved method name "$$" can also be changed using @Mixin#method() or
@DomainObject#mixinMethod().

3.2.6. Programmatic usage

When a domain object is rendered, the framework will automatically instantiate all required
mixins and delegate to them dynamically. If writing integration tests or fixtures, or (sometimes)
just regular domain logic, then you may need to instantiate mixins directly.

For this you can use the xref:rgsvc.adoc#_rgsvc_api_DomainObjectContainer_object-creation-
api[DomainObjectContainer#mixin(É) method. For example:

DocumentHolder_documents mixin = container . mixin (DocumentHolder_documents. class ,
customer);

The IntegrationTestAbstract and FixtureScript classes both provide a mixin(É) convenience
method.

3.2.7. Other reasons to use mixins

In the introduction to this topic we mentioned that mixins are most useful for ensuring that the
domain app remains decoupled. This applies to the case where the contributee (eg Customer, being
mixed into) is in one module, while the contributor mixin (DocumentHolder_documents) is in some
other module. The customer module knows about the document module, but not vice versa.

However, you might also want to consider moving behaviour out of entities even within the same
module, perhaps even within the same Java package. And the reason for this is to support hot-
reloading of Java classes, so that you can modify and recompile your application without having to
restart it. This can provide substantial productivity gains.

The Hotspot JVM has limited support for hot reloading; generally you can change method
implementations but you cannot introduce new methods. However, the DCEVM open source
project will patch the JVM to support much more complete hot reloading support. There are also, of
course, commercial products such as JRebel.

The main snag in all this is the DataNucleus enhancerÉ any change to entities is going to require
the entity to be re-enhanced, and the JDO metamodel recreated, which usually "stuffs things up". So
hot-reloading of an app whose fundamental structure is changing is likely to remain a no-no.

However, chances are that the structure of your domain objects (the data) will change much less
rapidly than the behaviour of those domain objects. Thus, itÕs the behaviour that youÕre most likely
wanting to change while the app is still running. If you move that behaviour out into mixins (or
contributed services), then these can be reloaded happily. (When running in prototype mode),

23

rgant.pdf#_rgant_Mixin_method
rgant.pdf#_rgant_DomainObject_mixinMethod
ugtst.pdf#_ugtst_integ-test-support_bootstrapping_IntegrationTestAbstract
rgcms.pdf#_rgcms_classes_super_FixtureScript
https://dcevm.github.io/

Apache Isis will automatically recreate the portion of the metamodel for any domain object as it is
rendered.

3.2.8. Related reading

Mixins are an implementation of the DCI architecture architecture, as formulated and described by
Trygve Reenskaug and Jim Coplien . Reenskaug was the inventor of the MVC pattern (and also the
external examiner for Richard PawsonÕs PhD thesis), while Coplien has a long history in object-
orientation, C++ and patterns.

DCI stands for Data-Context-Interaction and is presented as an evolution of object-oriented
programming, but one where behaviour is bound to objects dynamically rather than statically in
some context or other. The @Mixin pattern is Apache Isis' straightforward take on the same basic
concept.

You might also wish to check out Apache Zest (formerly Qi4J), which implements a much more
general purpose implementation of the same concepts.

3.3. Contributions
Contributed services provide many of the same benefits as mixins ; indeed mixins are an evolution
and refinement of the contributions concept.

$ ItÕs possible that contributions may be deprecated and eventually removed in a
future version of the framework, to be replaced entirely by mixins.

The main difference between contributed services and mixins is that the actions of a contributed
service will contribute to all the parameters of its actions, whereas a mixin only contributes to the
type accepted in its constructor. Also, contributed services are long-lived singletons, whereas
mixins are instantiated as required (by the framework) and then discarded almost immediately.

!
ThereÕs further useful information on contributed services in the reference guide,
discussing the @DomainService#nature() attribute, for the
NatureOfService.VIEW_CONTRIBUTIONS_ONLY nature.

3.3.1. Syntax

Any n-parameter action provided by a service will automatically be contributed to the list of actions
for each of its (entity) parameters. From the viewpoint of the entity the action is called a
contributed action.

For example, given a service:

public interface Library {
Ê public Loan borrow(Loanable l , Borrower b);
}

24

http://www.artima.com/articles/dci_vision.html
https://en.wikipedia.org/wiki/Trygve_Reenskaug
https://en.wikipedia.org/wiki/Jim_Coplien
http://zest.apache.org
rgant.pdf#_rgant-DomainService_nature

and the entities:

public class Book implements Loanable { ... }

and

public class LibraryMember implements Borrower { ... }

then the borrow(É) action will be contributed to both Book and to LibraryMember.

This is an important capability because it helps to decouple the concrete classes from the services.

If necessary, though, this behaviour can be suppressed by annotating the service action with
@org.apache.isis.applib.annotations.NotContributed .

For example:

public interface Library {
Ê @NotContributed
Ê public Loan borrow(Loanable l , Borrower b);
}

If annotated at the interface level, then the annotation will be inherited by every concrete class.
Alternatively the annotation can be applied at the implementation class level and only apply to that
particular implementation.

Note that an action annotated as being @NotContributed will still appear in the service menu for the
service. If an action should neither be contributed nor appear in service menu items, then simply
annotate it as @Hidden.

3.3.2. Contributed Action

! TODO

3.3.3. Contributed Property

! TODO

3.3.4. Contributed Collection

! TODO

3.4. Vetoing Visibility

25

! TODO - a write-up of the "vetoing subscriber" design pattern, eg as described in
the BookmarkService

eg if included an addon such as auditing or security.

solution is to write a domain event subscriber that vetoes the visibility

All the addons actions inherit from common base classes so this can be as broad-brush or fine-
grained as required

3.5. Event Bus

! TODO - see EventBusService, @Action#domainEvent(), @Property#domainEvent(),
@Collection#domainEvent(), WrapperFactory.

3.6. Pushing Changes

! This technique is much less powerful than using the event bus . We present it
mostly for completeness.

3.6.1. When a property is changed

If you want to invoke functionality whenever a property is changed by the user, then you should
create a supporting modifyXxx() method and include the functionality within that. The syntax is:

public void modifyPropertyName(PropertyType param) { ... }

Why not just put this functionality in the setter? Well, the setter is used by the object store to
recreate the state of an already persisted object. Putting additional behaviour in the setter would
cause it to be triggered incorrectly.

For example:

public class Order() {
Ê public Integer getAmount() { ... }
Ê public void setAmount(Integer amount) { ... }
Ê public void modifyAmount(Integer amount) { !
Ê setAmount(amount); #
Ê addToTotal(amount); "
Ê }
Ê ...
}

! The modifyAmount() method calls É

" É the addToTotal() (not shown) to maintain some running total.

26

rgsvc.pdf#_rgsvc_api_BookmarkService
rgsvc.pdf#_rgsvc_api_EventBusService
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgant.pdf#_rgant-Collection_domainEvent
rgsvc.pdf#_rgsvc_api_WrapperFactory

We donÕt want this addToCall() method to be called when pulling the object back from the object
store, so we put it into the modify, not the setter.

You may optionally also specify a clearXxx() which works the same way as modify modify Xxx() but
is called when the property is cleared by the user (i.e. the current value replaced by nothing). The
syntax is:

public void clearPropertyName() { ... }

To extend the above example:

public class Order() {
Ê public Integer getAmount() { ... }
Ê public void setAmount(Integer amount) { ... }
Ê public void modifyAmount(Integer amount) { ... }
Ê public void clearAmount() {
Ê removeFromTotal(this . amount);
Ê setAmount(null);
Ê }
Ê ...
}

3.6.2. When a collection is modified

A collection may have a corresponding addToXxx() and/or removeFromXxx() method. If present, and
direct manipulation of the contents of the connection has not been disabled (see ?), then they will
be called (instead of adding/removing an object directly to the collection returned by the accessor).

The reason for this behaviour is to allow other behaviour to be triggered when the contents of the
collection is altered. That is, it is directly equivalent to the supporting modifyXxx() and clearXxx()
methods for properties (see ?).

The syntax is:

public void addTo<CollectionName>(EntityType param) { ... }

and

public void removeFromCollectionName(EntityType param) { ... }

where EntityType is the same type as the generic collection type.

For example:

27

public class Employee { ... }

public class Department {

Ê private int numMaleEmployees; !
Ê private int numFemaleEmployees; "

Ê private Set<Employee> employees = new TreeSet<Employee>();
Ê public Set<Employee> getEmployees() {
Ê return employees;
Ê }
Ê private void setEmployees(Set<Employee> employees) {
Ê this . employees = employees;
Ê }
Ê public void addToEmployees(Employee employee) { #
Ê numMaleEmployees += countOneMale(employee);
Ê numFemaleEmployees += countOneFemale(employee);
Ê employees. add(employee);
Ê }
Ê public void removeFromEmployees(Employee employee) { $
Ê numMaleEmployees -= countOneMale(employee);
Ê numFemaleEmployees -= countOneFemale(employee);
Ê employees. remove(employee);
Ê }
Ê private int countOneMale(Employee employee) { return employee. isMale()? 1: 0; }
Ê private int countOneFemale(Employee employee) { return employee. isFemale()? 1: 0; }

Ê ...
}

! maintain a count of the number of male É

" É and female employees (getters and setters omitted)

the addToÉ () method increments the derived properties

$ the removeFromÉ () method similarly decrements the derived properties

28

rgcms.pdf#_rgcms_methods_prefixes_addTo
rgcms.pdf#_rgcms_methods_prefixes_addTo
rgcms.pdf#_rgcms_methods_prefixes_addTo
rgcms.pdf#_rgcms_methods_prefixes_removeFrom
rgcms.pdf#_rgcms_methods_prefixes_removeFrom
rgcms.pdf#_rgcms_methods_prefixes_removeFrom

Chapter 4. i18n
Apache Isis' support for internationlization (i18n) allows every element of the domain model (the
class names, property names, action names, parameter names and so forth) to be translated.

It also supports translations of messages raised imperatively, by which we mean as the result of a
call to title() to obtain an objectÕs title, or messages resulting from any business rule violations (eg
disable É () or validate É () , and so on.

The Wicket viewer (that is, its labels and messages) is also internationalized using the same
mechanism. If no translations are available, then the Wicket viewer falls back to using Wicket
resource bundles.

Isis does not translate the values of your domain objects, though. So, if you have a domain concept
such as Country whose name is intended to be localized according to the current user, you will need
to model this yourself.

4.1. Implementation Approach
Most Java frameworks tackle i18n by using JavaÕs own ResourceBundle API. However, there are
some serious drawbacks in this approach, including:

¥ if a string appears more than once (eg "name" or "description") then it must be translated
everywhere it appears in every resource bundle file

¥ there is no support for plural forms (see this SO answer)

¥ there is no tooling support for translators

Apache Isis therefore takes a different approach, drawing inspiration from GNUÕs gettext API and
specifically its .pot and .po files. These are intended to be used as follows:

¥ the .pot (portable object template) file holds the message text to be translated

¥ this file is translated into multiple .po (portable object) files, one per supported locale

¥ these .po files are renamed according to their locale, and placed into the 'appropriate' location
to be picked up by the runtime. The name of each .po resolved in a very similar way to resource
bundles.

The format of the .pot and .po files is identical; the only difference is that the .po file has
translations for each of the message strings. These message strings can also have singular and
plural forms.

#
Although Apache Isis' implementation is modelled after GNUÕs API, it does not use
any GNU software. This is for two reasons: (a) to simplify the toolchain/developer
experience, and (b) because GNU software is usually GPL, which would be
incompatible with the Apache license.

This design tackles all the issues of ResourceBundles:

29

rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_disable
rgcms.pdf#_rgcms_methods_prefixes_validate
rgcms.pdf#_rgcms_methods_prefixes_validate
rgcms.pdf#_rgcms_methods_prefixes_validate
ugvw.pdf
http://stackoverflow.com/questions/14326653/java-internationalization-i18n-with-proper-plurals/14327683#14327683
https://www.gnu.org/software/gettext/manual/index.html

¥ the .po message format is such that any given message text to translate need only be translated
once, even if it appears in multiple places in the application (eg "Name")

¥ the .po message format includes translations for (optional) plural form as well as singular form

¥ there are lots of freely available editors to be found , many summarized on this Drupal.org
webpage.

In fact, there are also online communities/platforms of translators to assist with translating
files. One such is crowdin (nb: this link does not imply endorsement).

In Apache Isis' implementation, if the translation is missing from the .po file then the original
message text from the .pot file will be returned. In fact, it isnÕt even necessary for there to be any
.po files; .po translations can be added piecemeal as the need arises.

4.2. TranslationService
The cornerstone of Apache Isis' support for i18n is the TranslationService service. This is defined in
the applib with the following API:

public interface TranslationService {
Ê public String translate (!
Ê final String context ,
Ê final String text);
Ê public String translate ("
Ê final String context ,
Ê final String singularText ,
Ê final String pluralText ,
Ê final int num);
Ê public enum Mode {
Ê READ,
Ê WRITE;
Ê }
Ê Mode getMode(); #
}

! is to translate the singular form of the text

" is to translate the plural form of the text

indicates whether the translation service is in read or write mode.

The translate(É) methods are closely modelled on GNUÕs gettext API. The first version is used
when no translation is required, the second is when both a singular and plural form will be
required, with the num parameter being used to select which is returned. In both cases the context
parameter provides some contextual information for the translator; this generally corresponds to
the class member.

The mode meanwhile determines the behaviour of the service. More on this below.

30

https://www.google.co.uk/search?q=.po+file+editor
https://www.drupal.org/node/11131
https://crowdin.com/

4.2.1. TranslationServicePo

Isis provides a default implementation of TranslationService , namely TranslationServicePo .

If the service is running in the normal read mode, then it simply provides translations for the locale
of the current user. This means locates the appropriate .po file (based on the requesting userÕs
locale), finds the translation and returns it.

If however the service is configured to run in write mode, then it instead records the fact that the
message was requested to be translated (a little like a spy/mock in unit testing mock), and returns
the original message. The service can then be queried to discover which messages need to be
translated. All requested translations are written into the .pot file.

To make the service as convenient as possible to use, the service configures itself as follows:

¥ if running in prototype mode deployment type or during integration tests, then the service runs
in write mode, in which case it records all translations into the .pot file. The .pot file is written
out when the system is shutdown.

¥ if running in server (production) mode deployment type , then the service runs in read mode. It
is also possible to set a configuration setting in isis.properties to force read mode even if
running in prototype mode (useful to manually test/demo the translations).

When running in write mode the original text is returned to the caller untranslated. If in read
mode, then the translated .po files are read and translations provided as required.

4.3. Imperative messages
The TranslationService is used internally by Apache Isis when building up the metamodel; the
name and description of every class, property, collection, action and action parameter is
automatically translated. Thus the simple act of bootstrapping Apache Isis will cause most of the
messages requiring translation (that is: those for the Apache Isis metamodel) to be captured by the
TranslationService .

However, for an application to be fully internationalized, any validation messages (from either
disableXxx() or validateXxx() supporting methods) and also possibly an objectÕs title (from the
title() method) will also require translation. Moreover, these messages must be captured in the
.pot file such that they can be translated.

4.3.1. TranslatableString

The first part of the puzzle is tackled by an extension to Apache Isis' programming model. Whereas
previously the disableXxx() / validateXxx() / title() methods could only return a java.lang.String ,
they may now optionally return a TranslatableString (defined in Isis applib) instead.

HereÕs a (silly) example from the SimpleApp archetype :

31

rgcfg.pdf#_rgcfg_deployment-types
rgcfg.pdf#_rgcfg_deployment-types
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

public TranslatableString validateUpdateName(final String name) {
Ê return name. contains ("!")? TranslatableString . tr ("Exclamation mark is not
allowed"): null ;
}

This corresponds to the following entry in the .pot file:

#: dom.simple.SimpleObject#updateName()
msgid "Exclamation mark is not allowed"
msgstr ""

The full API of TranslatableString is modelled on the design of GNU gettext (in particular the
gettext-commons library):

public final class TranslatableString {
Ê public static TranslatableString tr (!
Ê final String pattern ,
Ê final Object ... paramArgs) { ... }
Ê public static TranslatableString trn ("
Ê final String singularPattern ,
Ê final String pluralPattern ,
Ê final int number,
Ê final Object ... paramArgs) { ... }
Ê public String translate (#
Ê final TranslationService translationService ,
Ê final String context) { ... }
}

! returns a translatable string with a single pattern for both singular and plural forms.

" returns a translatable string with different patterns for singular and plural forms; the one to use
is determined by the 'number' argument

translates the string using the provided TranslationService , using the appropriate
singular/regular or plural form, and interpolating any arguments.

The interpolation uses the format {xxx} , where the placeholder can occur multiple times.

For example:

final TranslatableString ts = TranslatableString . tr (
Ê "My name is {lastName}, {firstName} {lastName}." ,
Ê "lastName", "Bond", "firstName" , "James");

would interpolate (for the English locale) as "My name is Bond, James Bond".

For a German user, on the other hand, if the translation in the corresponding .po file was:

32

https://code.google.com/p/gettext-commons/wiki/Tutorial

#: xxx.yyy.Whatever#context()
msgid "My name is {lastName}, {firstName} {lastName}."
msgstr "Ich heisse {firstName} {lastName}."

then the translation would be: "Ich heisse James Bond".

The same class is used in DomainObjectContainer so that you can raise translatable info, warning and
error messages; each of the relevant methods are overloaded.

For example:

public interface DomainObjectContainer {
Ê void informUser(String message);
Ê void informUser(
Ê TranslatableMessage message,
Ê final Class<?> contextClass , final String contextMethod); !
Ê ...
}

! are concatenated together to form the context for the .pot file.

4.3.2. TranslatableException

Another mechanism by which messages can be rendered to the user are as the result of exception
messages thrown and recognized by an ExceptionRecognizer.

In this case, if the exception implements TranslatableException , then the message will automatically
be translated before being rendered. The TranslatableException itself takes the form:

public interface TranslatableException {
Ê TranslatableString getTranslatableMessage(); !
Ê String getTranslationContext (); "
}

! the message to translate. If returns null , then the Exception#getMessage() is used as a fallback

" the context to use when translating the message

4.4. Wicket Viewer
The Wicket viewer (its labels and messages) is also internationalized using the TranslationService .
This is done through an Isis-specific implementation of the Wicket frameworkÕs
org.apache.wicket.Localizer class, namely LocalizerForIsis .

The Wicket Localizer defines the following API:

33

rgsvc.pdf#_rgsvc_api_DomainObjectContainer
rgsvc.pdf#_rgsvc_spi_ExceptionRecognizer
ugvw.pdf

public String getString (
Ê final String key, !
Ê final Component component, "
Ê final IModel<?> model,
Ê final Locale locale ,
Ê final String style ,
Ê final String defaultValue)
Ê throws MissingResourceException { ... }

! The key to obtain the resource for

" The component to get the resource for (if any)

For example, key might be a value such as "okLabel", while component an internal class of the Wicket
viewer, such as EntityPropertiesForm .

The LocalizerForIsis implementation uses the key as the msgId, while the fully qualified class name
of the component is used as a context. There is one exception to this: if the component is the third-
party select2 component (used for drop-downs), then that class name is used directly.

In the main, using Isis' i18n support means simply adding the appropriate translations to the
translation.po file, for each locale that you require. If the translations are missing then the original
translations from the Wicket resource bundles will be used instead.

4.4.1. Commonly used

Most of the translation requirements can be covered by adding in the following msgIds:

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "CollectionContentsAsAjaxTablePanelFactory.Table"
msgstr "Table"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "CollectionContentsAsUnresolvedPanel.Hide"
msgstr "Hide"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "aboutLabel"
msgstr "About"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "cancelLabel"
msgstr "Cancel"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "datatable.no-records-found"
msgstr "No Records Found"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "editLabel"

34

msgstr "Edit"

#: org.wicketstuff.select2.Select2Choice
msgid "inputTooShortPlural"
msgstr "Please enter {number} more characters"

#: org.wicketstuff.select2.Select2Choice
msgid "inputTooShortSingular"
msgstr "Please enter 1 more character"

#: org.wicketstuff.select2.Select2Choice
msgid "loadMore"
msgstr "Load more"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "logoutLabel"
msgstr "Logout"

#: org.wicketstuff.select2.Select2Choice
msgid "noMatches"
msgstr "No matches"

#: org.apache.isis.viewer.wicket.ui.pages.entity.EntityPage
msgid "okLabel"
msgstr "OK"

#: org.wicketstuff.select2.Select2Choice
msgid "searching"
msgstr "Searching..."

#: org.wicketstuff.select2.Select2Choice
msgid "selectionTooBigPlural"
msgstr "You can only select {limit} items"

#: org.wicketstuff.select2.Select2Choice
msgid "selectionTooBigSingular"
msgstr "You can only select 1 item"

4.4.2. Login/self-sign-up

In addition, there are a reasonably large number of messages that are used for both login and the
user registration (self sign-up) and password reset features.

These are:

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "AutoLabel.CSS.required"
msgstr "Required"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage

35

ugvw.pdf#_ugvw_features_user-registration

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "confirmPasswordLabel"
msgstr "Confirm password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
msgid "emailIsNotAvailable"
msgstr "The given email is already in use"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "emailPlaceholder"
msgstr "Enter your email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
msgid "emailPlaceholder"
msgstr "Enter an email for the new account"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "emailLabel"
msgstr "Email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "emailSentMessage"
msgstr "An email has been sent to '${email}' for verification."

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "forgotPasswordLinkLabel"
msgstr "Forgot your password?"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "loginHeader"
msgstr "Login"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "noSuchUserByEmail"
msgstr "There is no account with this email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "noUserForAnEmailValidToken"
msgstr "The account seems to be either already deleted or has changed its email
address. Please try again."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordChangeSuccessful"
msgstr "The password has been changed successfully. You can <a class =\" alert-success \"

36

style= \" text-decoration:underline; \" href= \" ${signInUrl} \" >login now."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordChangeUnsuccessful"
msgstr "There was a problem while updating the password. Please try again."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordLabel"
msgstr "Password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordPlaceholder"
msgstr "Enter password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordResetExpiredOrInvalidToken"
msgstr "You are trying to reset the password for an expired or invalid token"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordResetHeader"
msgstr "Forgot password"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "passwordResetSubmitLabel"
msgstr "Submit"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "registerButtonLabel"
msgstr "Register"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
msgid "registerHeader"
msgstr "Register"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "rememberMeLabel"
msgstr "Remember Me"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "resetButtonLabel"
msgstr "Reset"

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "signInButtonLabel"
msgstr "Sign in"

37

#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
msgid "signUpButtonLabel"
msgstr "Don't have an account? Sign up now."

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "signUpButtonLabel"
msgstr "Verify email"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
msgid "signUpHeader"
msgstr "Sign Up"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "usernameIsNotAvailable"
msgstr "The provided username is already in use"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "usernameLabel"
msgstr "Username"

#: org.apache.isis.viewer.wicket.ui.pages.accmngt.signup.RegistrationFormPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.register.RegisterPage
#: org.apache.isis.viewer.wicket.ui.pages.login.WicketSignInPage
#: org.apache.isis.viewer.wicket.ui.pages.accmngt.password_reset.PasswordResetPage
msgid "usernamePlaceholder"
msgstr "Username"

4.5. Integration Testing
So much for the API; but as noted, it is also necessary to ensure that the required translations are
recorded (by the TranslationService) into the .pot file.

For this, we recommend that you ensure that all such methods are tested through an integration
test (not unit test).

For example, hereÕs the corresponding integration test for the "Exclamation mark" example from
the simpleapp (above):

38

ugtst.pdf#_ugtst_integ-test-support
ugtst.pdf#_ugtst_integ-test-support

@Rule
public ExpectedException expectedException = ExpectedException. none();

@Inject
FixtureScripts fixtureScripts ;

@Test
public void failsValidation () throws Exception {
Ê // given
Ê RecreateSimpleObjects fs = new RecreateSimpleObjects(). setNumber(1);
Ê fixtureScripts . runFixtureScript (fs , null);
Ê SimpleObject simpleObjectWrapped = wrap(fs . getSimpleObjects (). get (0));

Ê // expect
Ê expectedExceptions. expect(InvalidException . class);
Ê expectedExceptions. expectMessage("Exclamation mark is not allowed");

Ê // when
Ê simpleObjectWrapped. updateName("new name!");
}

Running this test will result in the framework calling the validateUpdateName(É) method, and thus
to record that a translation is required in the .pot file.

When the integration tests are complete (that is, when Apache Isis is shutdown), the
TranslationServicePo will write out all captured translations to its log (more on this below). This
will include all the translations captured from the Apache Isis metamodel, along with all
translations as exercised by the integration tests.

To ensure your app is fully internationalized app, you must therefore:

¥ use TranslatableString rather than String for all validation/disable and title methods.

¥ ensure that (at a minimum) all validation messages and title methods are integration tested.

!

We make no apologies for this requirement: one of the reasons that we decided to
implement Apache Isis' i18n support in this way is because it encourages/requires
the app to be properly tested.

Behind the scenes Apache Isis uses a JUnit rule (ExceptionRecognizerTranslate) to
intercept any exceptions that are thrown. These are simply passed through to the
registered ExceptionRecognizers so that any messages are recorded as requiring
translation.

4.6. Escaped strings
Translated messages can be escaped if required, eg to include embedded markup.

39

rgsvc.pdf#_rgsvc_spi_ExceptionRecognizer

