
Domain Services

Table of Contents
1. Domain Services . 1

1.1. Other Guides . 1

2. Introduction . 2

2.1. Types of Domain Service . 2

2.2. Public API vs Internal Services . 3

2.3. Using the services . 3

2.4. Overriding the services . 4

2.5. Command and Events . 5

3. Presentation Layer SPI . 8

3.1. ContentMappingService . 11

3.2. EmailNotificationService . 13

3.3. ErrorReportingService . 15

3.4. ExceptionRecognizer . 18

3.5. GridSystemService . 20

3.6. GridLoaderService . 22

3.7. GridService. 23

3.8. HintStore . 24

3.9. LocaleProvider . 26

3.10. RoutingService . 27

3.11. TableColumnOrderService . 28

3.12. TranslationService . 29

3.13. TranslationsResolver . 30

3.14. UrlEncodingService . 31

3.15. UserProfileService . 32

4. Application Layer API . 34

4.1. AcceptHeaderService . 36

4.2. ActionInvocationContext . 38

4.3. BackgroundService2 . 40

4.4. CommandContext . 46

4.5. InteractionContext . 51

4.6. MessageService . 55

4.7. SessionManagementService . 56

4.8. TitleService . 57

4.9. TransactionService . 58

4.10. WrapperFactory . 60

5. Application Layer SPI . 64

5.1. BackgroundCommandService . 65

5.2. CommandService . 67

5.3. HomePageProviderService . 69

6. Core/Domain API . 71

6.1. ClockService . 73

6.2. ConfigurationService . 75

6.3. DomainObjectContainer . 76

6.4. EventBusService . 86

6.5. FactoryService . 94

6.6. Scratchpad . 95

6.7. UserService. 97

7. Integration API . 100

7.1. BookmarkService2. 101

7.2. DeepLinkService . 103

7.3. EmailService . 104

7.4. GuiceBeanProvider . 106

7.5. JaxbService . 108

7.6. MementoService (deprecated) . 109

7.7. XmlSnapshotService . 112

8. Metadata API . 117

8.1. ApplicationFeatureRepository . 118

8.2. LayoutService . 119

8.3. MetaModelService3 . 121

8.4. ServiceRegistry2. 123

8.5. SwaggerService . 124

9. Testing . 126

9.1. ExecutionParametersService . 127

9.2. FixtureScriptsDefault . 127

9.3. FixtureScriptsSpec’nProvider . 128

9.4. SudoService . 129

9.5. SwitchUserService (deprecated) . 132

10. Persistence Layer API . 133

10.1. IsisJdoSupport . 133

10.2. MetricsService . 138

10.3. QueryResultsCache . 139

10.4. RepositoryService . 142

11. Persistence Layer SPI . 149

11.1. AuditerService . 150

11.2. AuditingService3 (deprecated) . 153

11.3. EventSerializer (deprecated) . 154

11.4. PublisherService . 156

11.5. PublishingService (deprecated) . 159

11.6. UserRegistrationService . 164

12. Bootstrapping SPI . 167

12.1. ClassDiscoveryService . 167

Chapter 1. Domain Services
This guide documents Apache Isis' domain services, both those that act as an API (implemented by
the framework for your domain objects to call), and those domain services that act as an SPI
(implemented by your domain application and which are called by the framework).

1.1. Other Guides
Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures" guides.

The user guides available are:

• Fundamentals

• Wicket viewer

• Restful Objects viewer

• DataNucleus object store

• Security

• Testing

• Beyond the Basics

The reference guides are:

• Annotations

• Domain Services (this guide)

• Configuration Properties

• Classes, Methods and Schema

• Apache Isis Maven plugin

• Framework Internal Services

The remaining guides are:

• Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

• Committers' Guide (release procedures and related practices)

1

ugfun.pdf
ugvw.pdf
ugvro.pdf
ugdno.pdf
ugsec.pdf
ugtst.pdf
ugbtb.pdf
rgant.pdf
rgcfg.pdf
rgcms.pdf
rgmvn.pdf
rgfis.pdf
dg.pdf
cgcom.pdf

Chapter 2. Introduction

2.1. Types of Domain Service
The domain services also group into various broad categories. Many support functionality of the
various layers of the system (presentation layer, application layer, core domain, persistence layer);
others exist to allow the domain objects to integrate with other bounded contexts, or provide
various metadata (eg for development-time tooling). The diagram below shows these categories:

A small number of domain services can be considered both API and SPI; a good example is the
EmailService that is of direct use for domain objects wishing to send out emails, but is also used by
the framework to support the user registration functionality supported by the Wicket viewer. The
same is true of the EventBusService; this can be used by domain objects to broadcast arbitrary
events, but is also used by the framework to automatically emit events for @Action#domainEvent()
etc.

For these hybrid services we have categorized the service as an "API" service. This chapter
therefore contains only the strictly SPI services.

This rest of this guide is broken out into several chapters, one for each of the various
types/categories of domain service.

2

images/reference-services/categories.png
ugvw.pdf#_ugvw_features_user-registration
ugvw.pdf
rgant.pdf#_rgant-Action_domainEvent

2.2. Public API vs Internal Services
The vast majority of Apache Isis' domain services are defined in Apache Isis' applib
(o.a.i.core:isis-core-applib module) as stable, public classes. Importantly, this also minimizes the
coupling between your code and Apache Isis, allowing you to easily mock out these services in your
unit tests.

The framework also defines a number of "internal" services. These are not part of the framework’s
formal API, in that they use classes that are outside of the applib. These internal framework
services should be thought of as part of the internal design of the framework, and are liable to
change from release to release. The internal framework services are documented in the
Framework Internal Services guide.

2.3. Using the services
Apache Isis includes an extensive number of domain services for your domain objects to use;
simply define the service as an annotated field and Apache Isis will inject the service into your
object.

For example:

public class Customer {

 public void sendEmail(String subject, String body) {
 List<String> cc = Collections.emptyList;
 List<String> bcc = Collections.emptyList;
 emailService.send(getEmailAddress(), cc, bcc, subject, body);
 }
 public boolean hideSendEmail() {
 return !emailService.isConfigured();
 }

 @Inject ①
 EmailService emailService;
}

① Service automatically injected by the framework.

For objects that are already persisted, the service is automatically injected just after the object is
rehydrated by JDO/DataNucleus.

For transient objects (instantiated programmatically), the FactoryService's instantiate() method
(or the deprecated DomainObjectContainer's newTransientInstance() method) will automatically inject
the services.

Alternatively the object can be instantiated simply using new, then services injected using
ServiceRegistry's injectServicesInto(…) method (or the deprecated DomainObjectContainer's
injectServicesInto(…) method).

3

rgfis.pdf

2.4. Overriding the services
The framework provides default implementations for many of the domain services. This is
convenient, but sometimes you will want to replace the default implementation with your own
service implementation.

The trick is to use the @DomainServiceLayout#menuOrder() attribute, specifying a low number
(typically "1").

For a small number of domain services, all implementations are used (following
the chain-of-responsibility pattern), not just the first one. The services in
question are: ContentMappingService, GridSystemService, and RoutingService.

For example, suppose you wanted to provide your own implementation of LocaleProvider. Here’s
how:

@DomainService(
 nature = NatureOfService.DOMAIN
)
@DomainServiceLayout(
 menuOrder = "1" ①
)
public class MyLocaleProvider implements LocaleProvider {
 @Override
 public Locale getLocale() {
 return ...
 }
}

① takes precedence over the default implementation.

It’s also quite common to want to decorate the existing implementation (ie have your own
implementation delegate to the default); this is also possible and quite easy (if using 1.10.0 or later).
The idea is to have the framework inject all implementations of the service, and then to delegate to
the first one that isn’t "this" one:

4

rgant.pdf#_rgant-DomainServiceLayout_menuOrder

@DomainService(nature=NatureOfService.DOMAIN)
@DomainServiceLayout(
 menuOrder = "1"
①
)
public class MyLocaleProvider implements LocaleProvider {
 @Override
 public Locale getLocale() {
 return getDelegateLocaleProvider().getLocale();
②
 }
 private LocaleProvider getDelegateLocaleProvider() {
 return Iterables.tryFind(localeProviders, input -> input != this).orNull();
③
 }
 @Inject
 List<LocaleProvider> localeProviders;
④
}

① takes precedence over the default implementation when injected elsewhere.

② this implementation merely delegates to the default implementation

③ find the first implementation that isn’t this implementation (else infinite loop!)

④ injects all implementations, including this implemenation

The above code could be improved by caching the delegateLocaleProvider once located (rather than
searching each time).

2.5. Command and Events
A good number of the domain services manage the execution of action invocations/property edits,
along with the state of domain objects that are modified as a result of these. These services capture
information which can then be used for various purposes, most notably for auditing or for
publishing events, or for deferring execution such that the execution be performed in the
background at some later date.

The diagram below shows how these services fit together. The outline boxes are services while the
coloured boxes represent data structures - defined in the applib and therefore accessible to domain
applications - which hold various information about the executions.

To explain:

• the (request-scoped) CommandContext captures the user’s intention to invoke an action or edit a
property; this is held by the Command object.

• if a CommandService has been configured, then this will be used to create the Command object
implementation, generally so that it can then also be persisted.

5

If the action or property is annotated to be invoked in the background (using @Action#command
…() or @Property#command…()) then no further work is done. But, if the action/property is to be
executed in the foreground, then the interaction continues.

• the (request-scoped) InteractionContext domain service acts as a factory for the Interaction
object, which keeps track of the call-graph of executions (Interaction.Execution) of either action
invocations or property edits. In the majority of cases there is likely to be just a single top-level
node of this graph, but for applications that use the WrapperFactory extensively each successive
call results in a new child execution.

• before and after each action invocation/property edit, a domain event is may be broadcast to all
subscribers. Whether this occurs depends on whether the action/property has been annotated
(using @Action#domainEvent() or @Property#domainEvent()).

(Note that susbcribers will also receive events for vetoing the action/property; this is not shown
on the diagram).

• As each execution progresses, and objects that are modified are "enlisted" into the (internal)
ChangedObjectsServiceInternal domain service. Metrics as to which objects are merely loaded
into memory are also captured using the MetricsService (not shown on the diagram).

• At the end of each execution, details of that execution are published through the (internal)
PublisherServiceInternal domain service. This is only done for actions/properties annotated
appropriate (with @Action#publishing() or @Property#publishing()).

The internal service delegates in turn to any registered PublishingService (deprecated) and also
to any registered PublisherServices (there may be more than one).

• At the end of each transaction, details of all changed objects are published, again through the
(internal) PublisherServiceInternal to any registered PublishingService or PublisherService
implementations. Only domain objects specified to be published with
@DomainObject#publishing() are published.

Note that it’s possible for there to be more than one transaction per top-level
interaction, by virtue of the TransactionService.

• Also at the end of each transaction, details of all changed properties are passed to any registered
AuditerService or AuditingService (the latter deprecated) by way of the (internal)
AuditingServiceInternal domain service.

Implementations of CommandService can use the Command#getMemento() method to obtain a XML
equivalent of that Command, reified using the cmd.xsd schema. This can be converted back into a
CommandDto using the CommandDtoUtils utility class (part of the applib).

Similarly, implementations of PublisherService can use the InteractionDtoUtils utility class to
obtain a InteractionDto representing the interaction, either just for a single execution or for the
entire call-graph. This can be converted into XML in a similar fashion.

Likewise, the PublishedObjects class passed to the PublisherService at the end of the interaction
provides the PublishedObjects#getDto() method which returns a ChangesDto instance. This can be
converted into XML using the ChangesDtoUtils utility class.

6

rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Property_command
rgant.pdf#_rgant-Property_command
rgant.pdf#_rgant-Property_command
rgcms.pdf#_rgcms_classes_domainevent
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgfis.pdf#_rgfis_spi_ChangedObjectsServiceInternal
rgfis.pdf#_rgfis_spi_PublisherServiceInternal
rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-Property_publishing
rgfis.pdf#_rgfis_spi_PublisherServiceInternal
rgant.pdf#_rgant-DomainObject_publishing
rgfis.pdf#_rgfis_spi_AuditingServiceInternal
rgcms.pdf#_rgcms_schema-cmd

One final point: multiple PublisherService implementations are supported because different
implementations may have different responsibilities. For example, the (non-ASF) Isis addons'
publishmq module is responsible for publishing messages onto an ActiveMQ event bus, for inter-
system communication. However, the SPI can also be used for profiling; each execution within the
call-graph contains metrics of the number of objects loaded or modified as a result of that
execution, and thus could be used for application profiling. The framework provides a default
PublisherServiceLogging implementation that logs this using SLF4J.

7

http://github.com/isisaddons/isis-module-publishmq
http://github.com/isisaddons/isis-module-publishmq

Chapter 3. Presentation Layer SPI
Domain service SPIs for the presentation layer influence how the Apache Isis viewers behave.

The table below summarizes the presentation layer SPIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 1. Presentation Layer SPI

SPI Description Implemen
tation

Notes

o.a.i.applb.
services.conmap
ContentMappingService

(Attempt to) map the returned data into the
representation required by the client’s HTTP
Accept header.

Replaces
(and
simplifies)
the earlier
ContentMap
pingServic
e that
defined an
SPI using
classes
internal to
the
framework
.
+ No
default
implement
ation.

o.a.i.applib.
services.userreg
EmailNotificationServi
ce

Notify a user during self-registration of users. EmailNotif
icationSer
vice-
Default
o.a.i.core
isis-core-
runtime

depends
on:
a
configured
EmailServi
ce

o.a.i.applib.
services.error
ErrorReportingService

Record details of an error occurring in the
system (eg in an external incident recording
system such as JIRA), and return a more friendly
(jargon-free) message to display to the end user,
with optional reference (eg XXX-1234).

(none)

8

http://www.isisaddons.org

SPI Description Implemen
tation

Notes

o.a.i.applib.
services.exceprecog
ExceptionRecognizer2

Convert certain exceptions (eg foreign or unique
key violation in the database) into a format that
can be rendered to the end-user.

ExceptionR
ecognizer-
CompositeF
or-
JdoObjectS
tore
o.a.i.core
isis-core-
applib

Extensible
using
composite
pattern if
required

o.a.i.applib.
services.grid
GridSystemService

Validates and normalizes the grid layout for a
domain class (with respect to a particular grid
system such as Bootstrap3), also providing a
default grid (for those domain classes where
there is no grid layout).

GridSystem
ServiceBS3
o.a.i.core
isis-core-
metamodel

o.a.i.applib.
services.grid
GridLoaderService

Responsible for loading a grid layout for a
domain class, eg from a layout.xml file.

GridLoader
ServiceDef
ault
o.a.i.core
isis-core-
metamodel

o.a.i.applib.
services.grid
GridService

A facade on top of both GridLoaderService and
GridSystemService, thus being able to return
normalized grids for any domain class.

GridServic
eDefault
o.a.i.core
isis-core-
metamodel

o.a.i.applib.
services.hint
HintStore

Stores UI hints on a per-object basis. For
example, the viewer remembers which tabs are
selected, and for collections which view is
selected (eg table or hidden), which page of a
table to render, or whether "show all" (rows) is
toggled.

HintStoreU
singWicket
Session
o.a.i.view
er
isis-
viewer-
wicket-
impl

o.a.i.applib.
services.i18n
LocaleProvider

Request-scoped service to return the locale of
the current user, in support of i18n (ie so that
the app’s UI, messages and exceptions can be
translated to the required locale by the
TranslationService.

LocaleProv
iderWicket
o.a.i.view
er
isis-
viewer-
wicket-
impl

9

SPI Description Implemen
tation

Notes

o.a.i.applib.
services.routing
RoutingService

Return an alternative object than that returned
by an action.

RoutingSer
viceDefaul
t
o.a.i.core
isis-core-
applib

The default
implement
ation will
return the
home page
(per
HomePagePr
oviderServ
ice) if a
void or
null is
returned.
Used by
the Wicket
viewer
only.

o.a.i.applib.
services.tablecol
TableColumn-
OrderService

Allows the columns of a parented or standalone
table to be reordered, based upon the parent
object, collection id and type of object in the
collection..

TableColum
n-
OrderServi
ce.Default
o.a.i.core
isis-core-
applib

o.a.i.applib.
services.i18n
TranslationService

Translate an app’s UI, messages and exceptions
for the current user (as per the locale provided
by LocalProvider.

Translatio
nServicePo
o.a.i.core
isis-core-
runtime

related
services:
Translatio
nServicePo
Menu
depends
on:
Translatio
nsResolver,
LocaleProv
ider

o.a.i.applib.
services.i18n
TranslationsResolver

Obtain translations for a particuar phrase and
locale, in support of i18n (ie so that the app’s UI,
messages and exceptions can be translated to
the required locale by the TranslationService

Translatio
nsResolver
Wicket
o.a.i.view
er
isis-
viewer-
wicket-
impl

10

ugvw.pdf
ugvw.pdf

SPI Description Implemen
tation

Notes

o.a.i.applib.
services.urlencoding
UrlEncodingService

Converts strings into a form safe for use within a
URL. Used to convert view models mementos
into usable URL form.

UrlEncodin
gService
UsingBaseE
ncoding
o.a.i.appl
ib
isis-core-
applib

o.a.i.applib.
services.userprof
UserProfileService

Obtain an alternative (usually
enriched/customized) name for the current user,
to render in the UI.

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

3.1. ContentMappingService
The ContentMappingService supports the (default implementation of the) ContentNegotiationService
allowing the RestfulObjects viewer to allow domain objects to be transformed into some other
format as specified by the HTTP Accept header.

See ContentNegotiationService for further discussion.

Unlike most other domain services, the framework (that is,
ContentNegotiationService) will check all available implementations of
ContentMappingService to convert the domain object to the requested media type,
rather than merely the first implementation found; in other words it uses the
chain-of-responsibility pattern. Services are checked in the ordering defined by
@DomainServiceLayout#menuOrder()). The mapped object used will be the first non-
null result returned by an implementation.

3.1.1. SPI

The SPI defined by this service is:

public interface ContentMappingService {
 Object map(Object object, ①
 List<MediaType> acceptableMediaTypes); ②
}

11

rgfis.pdf#_rgfis_spi_ContentNegotiationService
ugvro.pdf
rgfis.pdf#_rgfis_spi_ContentNegotiationService
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

① typically the input is a domain object (whose structure might change over time), and the output
is a DTO (whose structure is guaranteed to be preserved over time)

② as per the caller’s HTTP Accept header

In versions prior to v1.12.0, this interface resided in a different package, internal to the Restful
Objects viewer, and defined a slightly different signature that used an internal enum:

public interface ContentMappingService {
 Object map(Object object,
 List<MediaType> acceptableMediaTypes,
 RepresentationType representationType); ①

}

① enum representing the requested representation; only ever take a value of DOMAIN_OBJECT or
ACTION_RESULT.

3.1.2. Implementations

No default implementations are provided by Apache Isis framework itself.

However, the (non-ASF) Isis addons' todoapp includes a sample implementation to convert its
ToDoItem entity into a (JAXB annotated) ToDoItemDto. The source code is:

12

http://github.com/isisaddons/isis-app-todoapp

@DomainService(nature = NatureOfService.DOMAIN)
public class ContentMappingServiceForToDoItem implements ContentMappingService {
 @Override
 public Object map(
 final Object object,
 final List<MediaType> acceptableMediaTypes) {
 if(object instanceof ToDoItem) {
 for (MediaType acceptableMediaType : acceptableMediaTypes) {
 final Map<String, String> parameters = acceptableMediaType
.getParameters();
 final String className = parameters.get("x-ro-domain-type");
 if(className.eqausl(ToDoItemV1_1.class.getName())) {
 return newToDoItemV1_1((ToDoItem) object);
 }
 }
 }
 return null;
 }
 private ToDoItemV1_1 newToDoItemV1_1(final ToDoItem toDoItem) {
 final ToDoItemV1_1 dto = new ToDoItemV1_1();
 dto.setToDoItem(toDoItem);
 dto.setDescription(toDoItem.getDescription());
 ...
 return dto;
 }
 ...
}

3.1.3. Related Services

This service is a companion to the default implementation of the ContentNegotiationService.

3.2. EmailNotificationService
The EmailNotificationService supports the user registration (self sign-up) features of the Wicket
viewer whereby a user can sign-up to access an application by providing a valid email address.

The Wicket viewer will check whether an implementation of this service (and also the
UserRegistrationService) is available, and if so will (unless configured not to) expose a sign-up page
where the user enters their email address. A verification email is sent using this service; the email
includes a link back to the running application. The user then completes the registration process
(choosing a user name, password and so on) and the Wicket viewer creates an account for them
(using the aforementioned UserRegistrationService).

The role of this service in all of this is to format and send out emails for the initial registration, or
for password resets.

The default implementation of this service uses the EmailService, which must be configured in

13

rgfis.pdf#_rgfis_spi_ContentNegotiationService
ugvw.pdf#_ugvw_features_user-registration
ugvw.pdf
ugvw.pdf

order for user registration to be enabled.

3.2.1. SPI

The SPI defined by this service is:

public interface EmailNotificationService extends Serializable {
 @Programmatic
 boolean send(EmailRegistrationEvent ev); ①
 @Programmatic
 boolean send(PasswordResetEvent ev); ②
 @Programmatic
 boolean isConfigured(); ③
}

① sends an email to verify an email address as part of the initial user registration

② sends an email to reset a password for an already-registered user

③ determines whether the implementation was configured and initialized correctly

If isConfigured() returns false then it is not valid to call send(…) (and doing so will result in an
IllegalStateException being thrown.

3.2.2. Implementation

The framework provides a default implementation,
o.a.i.core.runtime.services.userreg.EmailNotificationServiceDefault that constructs the emails to
send.

Alternative Implementations

The text of these email templates is hard-coded as resources, in other words baked into the core jar
files. If you need to use different text then you can of course always write and register your own
implementation to be used instead of Isis' default.

If you have configured an alternative email service implementation, it should process the message
body as HTML.

If you wish to write an alternative implementation of this service, note that (unlike most Apache
Isis domain services) the implementation is also instantiated and injected by Google Guice. This is
because EmailNotificationService is used as part of the user registration functionality and is used
by Wicket pages that are accessed outside of the usual Apache Isis runtime.

This implies a couple of additional constraints:

• first, implementation class should also be annotated with @com.google.inject.Singleton

• second, there may not be any Apache Isis session running. (If necessary, one can be created on
the fly using IsisContext.doInSession(…))

To ensure that your alternative implementation takes the place of the default implementation,

14

ugvw.pdf#_ugvw_features_user-registration

register it explicitly in isis.properties.

3.2.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' default implementation of
EmailNotificationService service is automatically registered and injected (it is annotated with
@DomainService) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.2.4. Related Services

As noted elsewhere, the default implementation of this service uses EmailService. This service has
no specific configuration properties but does require that the EmailService has been configured.

Conversely, this service is used by (Isis' default implementation of) UserRegistrationService.

3.3. ErrorReportingService
The ErrorReportingService service is an optional SPI that providies the ability to record any
errors/exceptions that might occur in the application into an external incident recording system
(such as JIRA). The service also allows a user-friendly (jargon-free) error message to be returned
and rendered to the end-user, along with an optional incident reference (eg a JIRA issue XXX-1234).

3.3.1. SPI

The SPI defined by this service is:

public interface ErrorReportingService {
 Ticket reportError(ErrorDetails errorDetails);
}

where ErrorDetails provided to the service is:

public class ErrorDetails {
 public String getMainMessage() { ... } ①
 public boolean isRecognized() { ... } ②
 public boolean isAuthorizationCause() { ... } ③
 public List<String> getStackTraceDetailList() { ④
}

① the main message to be displayed to the end-user. The service is responsible for translating this
into the language of the end-user (it can use LocaleProvider if required).

② whether this message has already been recognized by an ExceptionRecognizer service. Generally
this converts potentially non-recoverable (fatal) exceptions into recoverable exceptions

15

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

(warnings) as well providing an alternative mechanism for generating user-friendly error
messages.

③ whether the cause of the exception was due to a lack of privileges. In such cases the UI restricts
the information shown to the end-user, to avoid leaking potentially sensitive information

④ the stack trace of the exception, including the trace of any exceptions in the causal chain. These
technical details are hidden from the user and only shown for non-recoverable exceptions.

and Ticket (returned by the service) has the constructor:

public class Ticket implements Serializable {
 public Ticket(
 final String reference, ①
 final String userMessage, ②
 final String details) { ... } ③
}

① is a unique identifier that the end-user can use to track any follow-up from this error. For
example, an implementation might automatically log an issue in a bug tracking system such as
JIRA, in which case the reference would probably be the JIRA issue number <tt>XXX-1234</tt>.

② a short, jargon-free message to display to the end-user.

③ is optional additional details to show. For example, these might include text on how to recover
from the error, or workarounds, or just further details on contacting the help desk if the issue is
severe and requires immediate attention.

3.3.2. Implementation

The (non-ASF) Isis addons' kitchensink app provides an example implementation:

16

http://github.com/isisaddons/isis-app-kitchensink

@DomainService(nature = NatureOfService.DOMAIN)
public class KitchensinkErrorReportingService implements ErrorReportingService {
 private int ticketNumber = 1;
 @Override
 public Ticket reportError(final ErrorDetails errorDetails) {
 return new Ticket(
 nextTicketReference(),
 "The Kitchen sink app is sorry to report that: " + errorDetails
.getMainMessage(),
 "These are additional details for the end-user to read.\n"
 + "This content should be able to span many lines.\n"
 + "More detail.\n"
 + "Some suggested work-arounds.\n"
 + "Details of how to contact help desk.\n"
 + "And so on");
 }
 String nextTicketReference() {
 return "" + ticketNumber++;
 }
}

which is rendered as:

3.3.3. Registering the Services

There is no default implementation of this service. To register your own implementation (and
assuming that an AppManifest is being used to bootstrap the app), then just ensure that the
implementation is on the classpath and the module containing the implementation is returned in
AppManifest#getModules().

17

images/reference-services-spi/ErrorReportingService/kitchensink-example.png
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

3.4. ExceptionRecognizer
The ExceptionRecognizer service provides the mechanism for both the domain programmer and
also for components to be able to recognize and handle certain exceptions that may be thrown by
the system. Rather than display an obscure error to the end-user, the application can instead
display a user-friendly message.

For example, the JDO/DataNucleus Objectstore provides a set of recognizers to recognize and
handle SQL constraint exceptions such as uniqueness violations. These can then be rendered back
to the user as expected errors, rather than fatal stacktraces.

It is also possible to provide additional implementations, registered in isis.properties. Unlike
other services, where any service registered in isis.properties replaces any default
implementations, in the case of this service all implementations registered are "consulted" to see if
they recognize an exception (the chain-of-responsibility pattern).

3.4.1. SPI

The SPI defined by this service is:

public interface ExceptionRecognizer2 ... {
 public enum Category { ①
 ...
 }
 public static class Recognition { ②
 private Category category;
 private String reason;
 ...
 }
 @Programmatic
 public Recognition recognize2(Throwable ex); ③

 @Deprecated
 @Programmatic
 public String recognize(Throwable ex); ④

}

① an enumeration of varies categories of exceptions that are recognised

② represents the fact that an exception has been recognized as has been converted into a user-
friendy message, and has been categorized

③ the main API, to attempt to recognize an exception

④ deprecated API which converted exceptions into strings (reasons), ie without any categorization.
This is no longer called.

The categories are:

18

public interface ExceptionRecognizer2 ... {
 public enum Category {
 CONSTRAINT_VIOLATION, ①
 NOT_FOUND, ②
 CONCURRENCY, ③
 CLIENT_ERROR, ④
 SERVER_ERROR, ⑤
 OTHER ⑥
 }
 ...
}

① a violation of some declarative constraint (eg uniqueness or referential integrity) was detected.

② the object to be acted upon cannot be found (404)

③ a concurrency exception, in other words some other user has changed this object.

④ recognized, but for some other reason… 40x error

⑤ 50x error

⑥ recognized, but uncategorized (typically: a recognizer of the original ExceptionRecognizer API).

In essence, if an exception is recognized then it is also categorized. This lets the viewer act
accordingly. For example, if an exception is raised from the loading of an individual object, then
this is passed by the registered ExceptionRecognizers. If any of these recognize the exception as
representing a not-found exception, then an Apache Isis ObjectNotFoundException is raised. Both the
viewers interprets this correctly (the Wicket viewer as a suitable error page, the Restful Objects
viewer as a 404 status return code).

If the implementation recognizes the exception then it returns a user-friendly message to be
rendered (by the viewer) back to the user; otherwise it returns null. There is no need for the
implementation to check for exception causes; the casual chain is unwrapped by Apache Isis core
and each exception in the chain will also be passed through to the recognizer (from most specific to
least). The recognizer implementation can therefore be as fine-grained or as coarse-grained as it
wishes.

3.4.2. Implementation

The framework provides two default implementations:

• o.a.i.core.metamodel.services.container.DomainObjectContainerDefault provided by Apache Isis
core is itself an ExceptionRecognizer, and will handle ConcurrencyExceptions. It will also handle
any application exceptions raised by the system (subclasses of
o.a.i.applib.RecoverableException).

• o.a.i.objectstore.jdo.applib.service.exceprecog.ExceptionRecognizerCompositeForJdoObjectSto

re bundles up a number of more fine-grained implementations:

• ExceptionRecognizerForSQLIntegrityConstraintViolationUniqueOrIndexException

• ExceptionRecognizerForJDOObjectNotFoundException

• ExceptionRecognizerForJDODataStoreException

19

ugvw.pdf
ugvro.pdf
ugvro.pdf

If you want to recognize and handle additional exceptions (for example to capture error messages
specific to the JDBC driver you might be using), then create a fine-grained implementation of
ExceptionRecognizer2 for the particular error message (there are some convenience
implementations of the interface that you can subclass from if required) and register in
isis.properties.

3.4.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then the default implementations provided by the framework
(DomainObjectContainerDefault and ExceptionRecognizerCompositeForJdoObjectStore) will be
registered.

In addition, you can register any further exception recognizers in isis.properties:

isis.services=...,\
 com.mycompany.myapp.MyExceptionRecognizer,\
 ...

Prior to 1.9.0, the ExceptionRecognizerCompositeForJdoObjectStore also required
manual registration.

If the JDO exception recognizers are not required (rather unlikely), then they can be disabled en-
masse using the configuration property
isis.services.ExceptionRecognizerCompositeForJdoObjectStore.disable.

3.5. GridSystemService
The GridSystemService encapsulates a single layout grid system which can be used to customize the
layout of domain objects. In particular this means being able to return a "normalized" form
(validating and associating domain object members into the various regions of the grid) and in
providing a default grid if there is no other metadata available.

The framework provides a single such grid implementation, namely for Bootstrap3.

Unlike most other domain services, the framework will check all available
implementations of GridSystemService to obtain available grid systems, rather
than merely the first implementation found; in other words it uses the chain-of-
responsibility pattern. Services are called in the order defined by
@DomainServiceLayout#menuOrder()).

Note though that each concrete implementation must also provide corresponding
Wicket viewer components capable of interpreting the grid layout.

3.5.1. SPI

The SPI defined by this service is:

20

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgcfg.pdf#_rgcfg_configuring-core
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

public interface GridSystemService<G extends Grid> {
 Class<? extends Grid> gridImplementation(); ①
 String tns(); ②
 String schemaLocation(); ③
 Grid defaultGrid(Class<?> domainClass); ④
 void normalize(G grid, Class<?> domainClass); ⑤
 void complete(G grid, Class<?> domainClass); ⑥
 void minimal(G grid, Class<?> domainClass); ⑦
}

① The concrete subclass of Grid supported by this implementation. As noted in the introduction,
there can be multiple implementations of this service, but there can only be one
implementation per concrete subclass. As is normal practice, the service with the lowest
@DomainServiceLayout#menuOrder() takes precedence.

② the target namespace for this grid system. This is used when generating the XML. The
Bootstrap3 grid system provided by the framework returns the value
http://isis.apache.org/applib/layout/grid/bootstrap3.

③ the schema location for the XSD. The Bootstrap3 grid system provided by the framework
returns the value http://isis.apache.org/applib/layout/grid/bootstrap3/bootstrap3.xsd.

④ a default grid, eg two columns in ratio 4:8. Used when no existing grid layout exists for a
domain class.

⑤ Validates and normalizes a grid, modifying the grid so that all of the domain object’s members
(properties, collections, actions) are bound to regions of the grid. This is done using existing
metadata, most notably that of the @MemberOrder annotation. Such a grid, if persisted as the
layout XML file for the domain class, allows the @MemberOrder annotation to be removed from the
source code of the domain class (but other annotations must be retained).

⑥ Takes a normalized grid and enriches it with additional metadata (taken from Apache Isis'
internal metadata) that can be represented in the layout XML. Such a grid, if persisted as the
layout XML file for the domain class, allows all layout annotations (@ActionLayout,
@PropertyLayout and @CollectionLayout) to be removed from the source code of the domain class.

⑦ Takes a normalized grid and strips out removes all members, leaving only the grid structure.
Such a grid, if persisted as the layout XML file for the domain class, requires that the
@MemberOrder annotation is retained in the source code of said class in order to bind members to
the regions of the grid.

3.5.2. Implementation

The framework provides GridSystemServiceBS3, an implementation that encodes the bootstrap3 grid
system. (The framework also provides Wicket viewer components that are capable of interpreting
and rendering this metadata).

3.5.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app), then the Bootstrap3 default implementation of

21

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
http://isis.apache.org/applib/layout/grid/bootstrap3
http://isis.apache.org/applib/layout/grid/bootstrap3/bootstrap3.xsd
rgant.pdf#_rgant-MemberOrder
rgant.pdf#_rgant-ActionLayout
rgant.pdf#_rgant-PropertyLayout
rgant.pdf#_rgant-CollectionLayout
rgant.pdf#_rgant-MemberOrder
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

GridSystemService is automatically registered and injected, and no further configuration is
required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.5.4. Related Services

This service is used by GridService.

3.6. GridLoaderService
The GridLoaderService provides the ability to load the XML layout (grid) for a domain class.

3.6.1. SPI

The SPI defined by this service is:

public interface GridLoaderService {
 boolean supportsReloading(); ①
 void remove(Class<?> domainClass); ②
 boolean existsFor(Class<?> domainClass); ③
 Grid load(final Class<?> domainClass); ④
}

① whether dynamic reloading of layouts is enabled. The default implementation enables
reloading for prototyping, disables in production

② support metamodel invalidation/rebuilding of spec, eg as called by this Object mixin action.

③ whether any persisted layout metadata (eg a .layout.xml file) exists for this domain class.

④ returns a new instance of a Grid for the specified domain class, eg as loaded from a layout.xml
file. If none exists, will return null (and the calling GridService will use GridSystemService to
obtain a default grid for the domain class).

3.6.2. Implementation

The framework provides a default implementation of this service, namely
GridLoaderServiceDefault. This implementation loads the grid from its serialized representation as
a .layout.xml file, loaded from the classpath.

For example, the layout for a domain class com.mycompany.myapp.Customer would be loaded from
com/mycompany/myapp/Customer.layout.xml.

3.6.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app), then the default implementation of GridLoaderService is
automatically registered and injected, and no further configuration is required.

22

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object_rebuildMetamodel
rgcms.pdf#_rgcms_classes_layout_component
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.6.4. Related Services

This service is used by GridService.

3.7. GridService
The GridService provides the ability to load the XML layout (grid) for a domain class. To do this it
delegates:

• to GridLoaderService to load a pre-existing layout for the domain class, if possible

• to GridSystemService to normalize the grid with respect to Apache Isis' internal metamodel, in
other words to ensure that all of the domain objects' properties, collections and actions are
associated with regions of the grid.

Once a grid has been loaded for a domain class, this is cached internally by Apache Isis' internal
meta model (in the GridFacet facet). If running in prototype mode, any subsequent changes to the
XML will be detected and the grid rebuilt. This allows for dynamic reloading of layouts, providing a
far faster feedback (eg if tweaking the UI while working with end-users). Dynamic reloading is
disabled in production mode.

3.7.1. SPI

The SPI defined by this service is:

public interface GridService {
 boolean supportsReloading(); ①
 void remove(Class<?> domainClass); ②
 boolean existsFor(Class<?> domainClass); ③
 Grid load(final Class<?> domainClass); ④
 Grid defaultGridFor(Class<?> domainClass); ⑤
 Grid normalize(final Grid grid); ⑥
 Grid complete(Grid grid); ⑦
 Grid minimal(Grid grid); ⑧
}

① whether dynamic reloading of layouts is enabled. The default implementation enables
reloading for prototyping, disables in production

② support metamodel invalidation/rebuilding of spec, eg as called by this Object mixin action.

③ whether any persisted layout metadata (eg a .layout.xml file) exists for this domain class. Just
delegates to corresponding method in GridLoaderService.

④ returns a new instance of a Grid for the specified domain class, eg as loaded from a layout.xml
file. If none exists, will return null (and the calling GridService will use GridSystemService to
obtain a default grid for the domain class).

23

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object_rebuildMetamodel
rgcms.pdf#_rgcms_classes_layout_component

⑤ returns a default grid, eg two columns in ratio 4:8. Used when no existing grid layout exists for
a domain class.

⑥ validates and normalizes a grid, modifying the grid so that all of the domain object’s members
(properties, collections, actions) are bound to regions of the grid. This is done using existing
metadata, most notably that of the @MemberOrder annotation. Such a grid, if persisted as the
layout XML file for the domain class, allows the @MemberOrder annotation to be removed from the
source code of the domain class (but other annotations must be retained).

⑦ Takes a normalized grid and enriches it with additional metadata (taken from Apache Isis'
internal metadata) that can be represented in the layout XML. Such a grid, if persisted as the
layout XML file for the domain class, allows all layout annotations (@ActionLayout,
@PropertyLayout and @CollectionLayout) to be removed from the source code of the domain class.

⑧ Takes a normalized grid and strips out removes all members, leaving only the grid structure.
Such a grid, if persisted as the layout XML file for the domain class, requires that the
@MemberOrder annotation is retained in the source code of said class in order to bind members to
the regions of the grid.

The first four methods just delegate to the corresponding methods in GridSystemService, while the
last four delegate to the corresponding method in GridSystemService. The service inspects the
Grid's concrete class to determine which actual GridSystemService instance to delegate to.

3.7.2. Implementation

The framework provides a default implementation of this service, namely GridServiceDefault.

3.7.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app), then the default implementation of GridLoaderService is
automatically registered and injected, and no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide). That said, there should be little reason to use a different
implementation; if behaviour does need to be changed, it would also be possible to replace the
implementation of either the GridLoaderService or the GridSystemService.

3.7.4. Related Services

This service calls GridLoaderService and GridSystemService.

This service is called by LayoutService, exposed in the UI through LayoutServiceMenu (to download
the layout XML as a zip file for all domain objects) and the downloadLayoutXml() mixin (to download
the layout XML for a single domain object).

3.8. HintStore
The HintStore service defines an SPI for the Wicket viewer to store UI hints on a per-object basis.
For example, the viewer remembers which tabs are selected, and for collections which view is

24

rgant.pdf#_rgant-MemberOrder
rgant.pdf#_rgant-ActionLayout
rgant.pdf#_rgant-PropertyLayout
rgant.pdf#_rgant-CollectionLayout
rgant.pdf#_rgant-MemberOrder
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object
ugvw.pdf

selected (eg table or hidden), which page of a table to render, or whether "show all" (rows) is
toggled.

The default implementation of this service uses the HTTP session. The service is an SPI because the
amount of data stored could potentially be quite large (for large numbers of users who use the app
all day). An SPI makes it easy to plug in an alternative implementation that is more sophisticated
than the default (eg implementing MRU/LRU queue, or using a NoSQL database, or simply to
disabling the functionality altogether).

3.8.1. SPI

The SPI of HintStore is:

public interface HintStore {
 String get(final Bookmark bookmark, String hintKey); ①
 void set(final Bookmark bookmark, String hintKey, String value); ②
 void remove(final Bookmark bookmark, String hintKey); ③
 void removeAll(Bookmark bookmark); ④
 Set<String> findHintKeys(Bookmark bookmark); ⑤
}

① obtain a hint (eg which tab to open) for a particular object. Object identity is represented by
Bookmark, as per the BookmarkService, so that alternative implementations can easily serialize this
state to a string.

② set the state of a hint. (The value of) all hints are represented as strings.

③ remove a single hint for an object;

④ remove all hints

⑤ obtain all known hints for an object

3.8.2. Implementation

The core framework provides a default implementation of this service
(org.apache.isis.viewer.wicket.viewer.services.HintStoreUsingWicketSession).

3.8.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of HintStore service is
automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.8.4. Related Services

The Wicket viewer exposes the "clear hints" mixin action that is for use by end-users of the

25

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_mixins_Object_clearHints

application to clear any UI hints that have accumulated for a domain object.

3.9. LocaleProvider
The LocaleProvider service is one of the services that work together to implement Apache Isis'
support for i18n, being used by Isis' default implementation of TranslationService.

The role of the service itself is simply to return the Locale of the current user.

 For the "big picture" and further details on Apache Isis' i18n support, see here.

3.9.1. SPI

The SPI defined by this service is:

public interface LocaleProvider {
 @Programmatic
 Locale getLocale();
}

This is notionally request-scoped, returning the Locale of the current user; not that of the server.
(Note that the implementation is not required to actually be @RequestScoped, however).

3.9.2. Implementation

Isis' Wicket viewer provides an implementation of this service (LocaleProviderWicket) which
leverages Apache Wicket APIs.

 Currently there is no equivalent implementation for the RestfulObjects viewer.

3.9.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app), and that the Wicket viewer is being used, then an
implementation of LocaleProvider is automatically registered and injected (it is annotated with
@DomainService) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.9.4. Related Services

This service works in conjunction with TranslationService and TranslationsResolver in order to
provide i18n support.

26

ugbtb.pdf#_ugbtb_i18n
rgant.pdf#_rgant-RequestScoped
ugvw.pdf
ugvro.pdf
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugvw.pdf
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

3.10. RoutingService
The RoutingService provides the ability to return (and therefore render) an alternative object from
an action invocation.

There are two primary use cases:

• if an action returns an aggregate leaf (that is, a child object which has an owning parent), then
the parent object can be returned instead.

For example, an action returning OrderItem might instead render the owning Order object. It is
the responsibility of the implementation to figure out what the "owning" object might be.

• if an action returns null or is void, then return some other "useful" object.

For example, return the home page (eg as defined by the @HomePage annotation).

Currently the routing service is used only by the Wicket viewer; it is ignored by the Restful Objects
viewer.

Unlike most other domain services, the framework will check all available
implementations of RoutingService to return a route, rather than the first
implementation found; in other words it uses the chain-of-responsibility pattern.
Services are called in the order defined by @DomainServiceLayout#menuOrder()).
The route used will be the result of the first implementation checked that
declares that it can provide a route.

3.10.1. SPI

The SPI defined by this service is:

public interface RoutingService {
 @Programmatic
 boolean canRoute(Object original); ①
 @Programmatic
 Object route(Object original); ②
}

① whether this implementation recognizes and can "route" the object. The route(…) method is
only called if this method returns true.

② the object to use; this may be the same as the original object, some other object, or (indeed) null.

3.10.2. Implementation

The framework provides a default implementation - RoutingServiceDefault - which will always
return the original object provided, or the home page if a null or void was provided. It uses the
HomePageProviderService.

27

rgant.pdf#_rgant-HomePage
ugvw.pdf
ugvro.pdf
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

There can be multiple implementations of RoutingService registered. These are checked in turn
(chain of responsibility pattern), ordered according to @DomainServiceLayout#menuOrder() (as
explained in the introduction to this guide). The route from the first service that returns true from
its canRoute(…) method will be used.

3.10.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' default implementation of RoutingService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

3.10.4. Related Services

The default implementation of this service uses the HomePageProviderService.

3.11. TableColumnOrderService
The TableColumnOrderService (1.14.0-SNAPSHOT) provides the ability to reorder (or suppress) columns
in both parented- and standalone tables.

3.11.1. SPI

The SPI defined by this service is:

public interface TableColumnOrderService {
 List<String> orderParented(①
 Object parent,
 String collectionId,
 Class<?> collectionType,
 List<String> propertyIds);
 List<String> orderStandalone(②
 Class<?> collectionType,
 List<String> propertyIds);
}

① for the parent collection owned by the specified parent and collection Id, return the set of
property ids in the same or other order.

② for the standalone collection of the specified type, return the set of property ids in the same or
other order, else return null if provides no reordering.

There can be multiple implementations of TableColumnOrderService registered, ordered as per
@DomainServiceLayout#menuOrder(). The ordering provided by the first such service that returns a
non-null value will be used. If all provided implementations return null, then the framework will
fallback to a default implementation.

28

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant_DomainServiceLayout_menuOrder

3.11.2. Implementation

The framework provides a fallback implementation of this service, namely
TableColumnOrderService.Default.

3.11.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app), then the default implementation of TableColumnOrderService
is automatically registered and injected, and no further configuration is required.

3.12. TranslationService
The TranslationService is the cornerstone of Apache Isis' i18n support. Its role is to be able to
provide translated versions of the various elements within the Apache Isis metamodel (service and
object classes, properties, collections, actions, action parameters) and also to translate business rule
(disable/valid) messages, and exceptions. These translations provide for both singular and plural
forms.

 For the "big picture" and further details on Apache Isis' i18n support, see here.

3.12.1. SPI

The SPI defined by this service is:

public interface TranslationService {
 @Programmatic
 String translate(String context, String text); ①
 @Programmatic
 String translate(String context, ②
 String singularText,
 String pluralText, int num);

 enum Mode { READ, WRITE;}
 @Programmatic
 Mode getMode(); ③
}

① translate the text, in the locale of the "current user".

② return a translation of either the singular or the plural text, dependent on the num parameter, in
the locale of the "current user"

③ whether this implementation is operating in read or in write mode.

If in read mode, then the translations are expected to be present.

If in write mode, then the implementation is saving translation keys, and will always return the
untranslated translation.

29

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_i18n

3.12.2. Implementation

The Apache Isis framework provides a default implementation (TranslationServicePo) that uses the
GNU .pot and .po files for translations. It relies on the LocaleProvider service (to return the Locale
of the current user) and also the TranslationsResolver service (to read existing translations).

The framework also provides a supporting TranslationServicePoMenu provides menu items under
the "Prototyping" secondary menu for controlling this service and downloading .pot files for
translation.

For more details on the implementation, see i18n support.

3.12.3. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of TranslationService
service (along with the supporting menu service) are automatically registered and injected (it is
annotated with @DomainService) so no further configuration is required.

If the menu items are not required then these can be suppressed either using security or by
implementing a vetoing subscriber.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.12.4. Related Menus

The TranslationServicePoMenu menu exposes the TranslationServicePo service’s toPot() method so
that all translations can be downloaded as a single file.

3.12.5. Related Services

This service works in conjunction with LocaleProvider and TranslationsResolver in order to provide
i18n support.

3.13. TranslationsResolver
The TranslationsResolver service is one of the services that work together to implement Apache Isis'
support for i18n, being used by Isis' default implementation of TranslationService.

The role of the service itself is locate and return translations.

 For the "big picture" and further details on Apache Isis' i18n support, see here.

3.13.1. SPI

The SPI defined by this service is:

30

ugbtb.pdf#_ugbtb_i18n
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugbtb.pdf#_ugbtb_i18n

public interface TranslationsResolver {
 @Programmatic
 List<String> readLines(final String file);
}

3.13.2. Implementation

Isis' Wicket viewer provides an implementation of this service (TranslationsResolverWicket) which
leverages Apache Wicket APIs. This searches for translation files in the standard WEB-INF/ directory.

 Currently there is no equivalent implementation for the RestfulObjects viewer.

3.13.3. Registering the Service

Assuming that the <code>configuration-and-annotation</code> services installer is configured
(implicit if using the <code>AppManifest</code> to bootstrap the app),
_and that the Wicket viewer is being used, then an implementation
of <code>TranslationsResolver</code> is automatically registered and injected (it is annotated with
<code>@DomainService</code>) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.13.4. Related Services

This service works in conjunction with LocaleProvider and TranslationService in order to provide
i18n support.

3.14. UrlEncodingService
The UrlEncodingService defines a consistent way to convert strings to/from a form safe for use
within a URL. The service is used by the framework to map view model mementos (derived from
the state of the view model itself) into a form that can be used as a view model. When the
framework needs to recreate the view model (for example to invoke an action on it), this URL is
converted back into a view model memento, from which the view model can then be hydrated.

Defining this functionality as an SPI has two use cases:

• first, (though some browsers support longer strings), there is a limit of 2083 characters for URLs.
For view model mementos that correspond to large strings (as might occur when serializing a
JAXB @XmlRootElement-annotated view model), the service provides a hook.

For example, each memento string could be mapped to a GUID held in some cluster-aware
cache.

• the service provides the ability, to encrypt the string in order to avoid leakage of potentially

31

ugvw.pdf
ugvro.pdf
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugbtb.pdf#_ugbtb_view-models
rgant.pdf#_rgant-XmlRootElement

sensitive state within the URL.

The framework provides a default implementation of this service,
UrlEncodingServiceUsingBaseEncoding (also in the applib) that uses base-64 encoding to UTF-8 charset.

3.14.1. SPI

The SPI defined by the service is:

public interface UrlEncodingService {
 @Programmatic
 public String encode(final String str); ①
 @Programmatic
 public String decode(String str); ②
}

① convert the string (eg view model memento) into a string safe for use within an URL

② unconvert the string from its URL form into its original form URL

3.14.2. Implementation

The framework provides a default implementation (UrlEncodingServiceUsingBaseEncoding) that
simply converts the string using base-64 encoding and UTF-8 character set. As already noted, be
aware that the maximum length of a URL should not exceed 2083 characters. For large view
models, there’s the possibility that this limit could be exceeded; in such cases register an alternative
implementation of this service.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

3.15. UserProfileService
The UserProfileService provides the ability for the domain application to return supplementary
metadata about the current user. This information is used (by the Wicket viewer) to customize the
appearance of the tertiary "Me" menu bar (top right). For example, rather than display the
username, instead the user’s first and last name could be displayed.

Another use case is to allow the user to switch context in some fashion or other. This might be to
emulate a sort of "sudo"-like function, or perhaps to focus on some particular set of data.

3.15.1. SPI

The SPI defined by the service is:

32

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugvw.pdf

public interface UserProfileService {
 @Programmatic
 String userProfileName(); ①
}

① is used (in the Wicket viewer) as the menu name of the tertiary "Me" menu bar.

If the method returns null or throws an exception then the framework will default to using the
current user name.

In the future this API may be expanded; one obvious possibility is to return a profile photo or
avatar URL.

3.15.2. Implementation

There is no default implementation of this service provided by the core Apache Isis framework.

An example implementation can be found in the (non-ASF) Isis addons' todoapp:

Currently this feature is not integrated with Apache Isis' authentication
mechanisms; the information provided is purely metadata provided for
presentation purposes only.

33

http://github.com/isisaddons/isis-app-todoapp
images/reference-services-spi/UserProfileService/todoapp.png

Chapter 4. Application Layer API
Domain service APIs for the application layer allow the domain objects to control aspects of the
application layer, such as sending info messages back to the end-user.

The table below summarizes the application layer APIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 2. Application Layer API

API Description Implemen
tation

Notes

o.a.i.applib.
services.acceptheader
AcceptHeaderService

Request-scoped access to HTTP Accept headers. AcceptHead
erServiceD
efault
o.a.i.core
isis-
viewer-
restfulobj
ects-
rendering

Populated
only when
the domain
objects are
accessed
using the
Restful
Objects
viewer.

o.a.i.applib.
services.actinv
ActionInvocation-
Context

Request-scoped access to whether action is
invoked on object and/or on collection of objects

ActionInvo
cationCont
ext
o.a.i.core
isis-core-
applib

API is also
concrete
class

o.a.i.applib.
services.background
BackgroundService

Programmatic persistence of commands to be
persisted (so can be executed by a background
mechanism, eg scheduler)

Background
ServiceDef
ault
o.a.i.core
isis-core-
runtime

depends
on:
Background
Command-
Service

34

http://www.isisaddons.org
ugvro.pdf
ugvro.pdf
ugvro.pdf

API Description Implemen
tation

Notes

o.a.i.applib.
services.command
CommandContext

Request-scoped access to capture the users’s
intention to invoke an action or to edit a
property.

CommandCon
text
o.a.i.core
isis-core-
applib

API is also
a concrete
class.
depends
on:
CommandSer
vice for
persistent
Command,
else in-
memory
impl. used.
The
Interactio
nContext
manages
the actual
execution
of the
command.

o.a.i.applib.
services.iactn
InteractionContext

Request-scoped access to the current member
execution (action invocation or property edit),
represented as the Interaction context.

Interactio
nContext
o.a.i.core
isis-core-
applib

API is also
a concrete
class.

o.a.i.applib.
services.message
MessageService

Methods to inform or warn the user, or to raise
errors.

FactorySer
vice-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

o.a.i.applib.
services.sessmgmt
SessionManagementServi
ce

Methods for batching long-running work (eg
data migration) into multiple sessions.

SessionMan
agementSer
vice-
Default
o.a.i.core
isis-core-
runtime

o.a.i.applib.
services.title
TitleService

Methods to programmatically obtain the title or
icon of a domain object.

TitleServi
ce-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

35

API Description Implemen
tation

Notes

o.a.i.applib.
services.xactn
TransactionService

Methods for managing transactions. Transactio
nService-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

o.a.i.applib.
services.wrapper
WrapperFactory

Interact with another domain object "as if"
through the UI (enforcing business rules, firing
domain events)

WrapperFac
toryDefaul
t
o.a.i.core
isis-core-
wrapper

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

4.1. AcceptHeaderService
The AcceptHeaderService domain service is a @RequestScoped service that simply exposes the HTTP
Accept header to the domain. Its intended use is to support multiple versions of a REST API, where
the responsibility for content negotiation (determining which version of the REST API is to be used)
is managed by logic in the domain objects themselves.

As an alternative to performing content negotiation within the domain classes,
the ContentNegotiationService and ContentMappingService SPI domain services
allow the framework to perform the content negotiation responsibility.

4.1.1. API & Implementation

The API defined by the service is:

@DomainService(nature = NatureOfService.DOMAIN)
@RequestScoped ①
public interface AcceptHeaderService {
 @Programmatic
 List<MediaType> getAcceptableMediaTypes(); ②
}

① is @RequestScoped, so this domain service instance is scoped to a particular request and is then
destroyed

②

36

rgant.pdf#_rgant-RequestScoped
rgfis.pdf#_rgfis_spi_ContentNegotiationService
rgant.pdf#_rgant-RequestScoped

returns the list of media types found in the HTTP Accept header.

The default implementation is provided by
o.a.i.v.ro.rendering.service.acceptheader.AcceptHeaderServiceForRest.

Note that the service will only return a list when the request is initiated through
the Restful Objects viewer. Otherwise the service will return null.

4.1.2. Usage

The intended use of this service is where there are multiple concurrent versions of a REST API, for
backward compatibility of existing clients. The AcceptHeaderService allows the responsibility for
content negotiation (determining which version of the REST API is to be used) to be performed by
logic in the domain objects themselves.

The diagram below illustrated this:

The REST request is submitted to a domain service with a nature of VIEW_REST_ONLY (MyRestApi in the
diagram). This uses the AcceptHeaderService to obtain the values of the HTTP Accept header. Based
on this it delegates to the appropriate underlying domain service (with a nature of DOMAIN so that
they are not exposed in the REST API at all).

37

ugvro.pdf
images/reference-services-api/acceptheaderservice.png
rgant.pdf#_rgant-DomainService_nature

The service does not define any conventions as to the format of the media types.
The option is to use the media type’s type/subtype, eg application/vnd.myrestapi-
v1+json; an alternative is to use a media type parameter as a hint, eg
application/json;x-my-rest-api-version=1 (where x-my-rest-api-version is the
media type parameter).

The Restful Objects specification does this something similar with its own x-ro-
domain-type media type parameter; this is used by the ContentMappingService to
determine how to map domain objects to view models/DTOs.

4.1.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' default implementation of
AcceptHeaderService class is automatically registered (it is annotated with @DomainService) so no
further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.2. ActionInvocationContext
The ActionInvocationContext domain service is a @RequestScoped service intended to support the
implementation of "bulk" actions annotated with @Action#invokeOn(). This allows the user to select
multiple objects in a table and then invoke the same action against all of them.

When an action is invoked in this way, this service allows each object instance to "know where it is"
in the collection; it acts a little like an iterator. In particular, an object can determine if it is the last
object to be called, and so can perform special processing, eg to return a summary calculated result.

4.2.1. API & Implementation

The API defined by the service is:

@DomainService(nature = NatureOfService.DOMAIN)
@RequestScoped ①
public static class ActionInvocationContext {
 public InvokedOn getInvokedOn() { ... } ②
 public List<Object> getDomainObjects() { ... } ③
 public int getSize() { ... }
 public int getIndex() { ... } ④
 public boolean isFirst() { ... }
 public boolean isLast() { ... }
}

① is @RequestScoped, so this domain service instance is scoped to a particular request and is then
destroyed

②

38

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgant.pdf#_rgant-RequestScoped
rgant.pdf#_rgant-Action_invokeOn
rgant.pdf#_rgant-RequestScoped

an enum set to either OBJECT (if action has been invoked on a single object) or COLLECTION (if has
been invoked on a collection).

③ returns the list of domain objects which are being acted upon

④ is the 0-based index to the object being acted upon.

4.2.2. Usage

For actions that are void or that return null, Apache Isis will return to the list once executed. But for
bulk actions that are non-void, Apache Isis will render the returned object/value from the last
object invoked (and simply discards the object/value of all actions except the last).

One idiom is for the domain objects to also use the Scratchpad service to share information, for
example to aggregate values. The ActionInvocationContext#isLast() method can then be used to
determine if all the information has been gathered, and then do something with it (eg derive
variance across a range of values, render a graph etc).

More prosaically, the ActionInvocationContext can be used to ensure that the action behaves
appropriately depending on how it has been invoked (on a single object and/or a collection)
whether it is called in bulk mode or regular mode. Here’s a snippet of code from the bulk action in
the Isis addon example todoapp (not ASF):

public class ToDoItem ... {
 @Action(invokeOn=InvokeOn.OBJECTS_AND_COLLECTIONS)
 public ToDoItem completed() {
 setComplete(true);
 ...
 return actionInvocationContext.getInvokedOn() == InvokedOn.OBJECT
 ? this ①
 : null; ②
 }
 @Inject
 ActionInvocationContext actionInvocationContext;
}

① if invoked as a regular action, return this object;

② otherwise (if invoked on collection of objects), return null, so that the Wicket viewer will re-
render the list of objects

4.2.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' default implementation of
ActionInvocationContext class is automatically registered (it is annotated with @DomainService) so no
further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

39

https://github.com/isisaddons/isis-app-todoapp/
ugvw.pdf
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

4.2.4. Unit testing support

The ActionInvocationContext class also has a couple of static factory methods intended to support
unit testing:

@DomainService(nature = NatureOfService.DOMAIN)
@RequestScoped
public class ActionInvocationContext {
 public static ActionInvocationContext onObject(final Object domainObject) {
 return new ActionInvocationContext(InvokedOn.OBJECT, Collections.
singletonList(domainObject));
 }
 public static ActionInvocationContext onCollection(final Object... domainObjects)
{
 return onCollection(Arrays.asList(domainObjects));
 }
 public static ActionInvocationContext onCollection(final List<Object>
domainObjects) {
 return new ActionInvocationContext(InvokedOn.COLLECTION, domainObjects);
 }
 ...
}

4.3. BackgroundService2
The BackgroundService2 domain service, and also the companion BackgroundCommandService2 SPI
service, enable commands to be persisted such that they may be invoked in the background.

The BackgroundService2 is responsible for capturing a memento representing the command in a
typesafe way, and persisting it rather than executing it directly.

The default BackgroundServiceDefault implementation works by using a proxy wrapper around the
target so that it can capture the action to invoke and its arguments. (As of 1.13.0), this is done using
CommandDtoServiceInternal (in previous releases it used (a private copy of) MementoService).

The persistence delegates the persistence of the memento to an appropriate implementation of the
companion BackgroundCommandService2. One such implementation of BackgroundCommandService is
provided by (non-ASF) Isis addons' command module.

The persisting of commands is only half the story; there needs to be a separate process to read the
commands and execute them. The BackgroundCommandExecution abstract class (discussed below)
provides infrastructure to do this; the concrete implementation of this class depends on the
configured BackgroundCommandService (in order to query for the persisted (background) Commands.

4.3.1. API & Implementation

The API is:

40

rgfis.pdf#_rgfis_spi_CommandDtoServiceInternal
http://github.com/isisaddons/isis-module-command

public interface BackgroundService2 {
 <T> T execute(final T object); ①
 <T> T executeMixin(Class<T> mixinClass, Object mixedIn); ②
}

① returns a proxy around the domain object; any methods executed against this proxy will result
in a command (to invoke the corresponding action) being persisted by
BackgroundCommandService2

② Returns a proxy around the mixin; any methods executed against this proxy will result in a
command (to invoke the corresponding mixin action) being persisted by
BackgroundCommandService2.

The default implementation is provided by core
(o.a.i.core.runtime.services.background.BackgroundServiceDefault).

4.3.2. Usage

Using the service is very straight-forward; wrap the target domain object using
BackgroundService#execute(…) and invoke the method on the object returned by that method.

For example:

public void submitCustomerInvoices() {
 for(Customer customer: customerRepository.findCustomersToInvoice()) {
 backgroundService.execute(customer).submitInvoice();
 }
 messageService.informUser("Calculating...");
}

This will create a bunch of background commands executing the submitInvoice() action for each of
the customers returned from the customer repository.

The action method invoked must be part of the Apache Isis metamodel, which is to say it must be
public, accept only scalar arguments, and must not be annotated with @Programmatic or @Ignore.
However, it may be annotated with @Action#hidden() or @ActionLayout#hidden() and it will still be
invoked.

In fact, when invoked by the background service, no business rules (hidden, disabled, validation)
are enforced; the action method must take responsibility for performing appropriate validation and
error checking.

If you want to check business rules, you can use
@WrapperFactory#wrapNoExecute(…).

4.3.3. End-user experience

For the end-user, executing an action that delegates work off to the BackgroundService raises the

41

rgant.pdf#_rgant-Programmatic
rgant.pdf#_rgant-Action_hidden
rgant.pdf#_rgant-ActionLayout_hidden
rgant.pdf#_rgant-WrapperFactory
rgant.pdf#_rgant-WrapperFactory
rgant.pdf#_rgant-WrapperFactory

problem of how does the user know the work is complete?

One option is for the background jobs to take responsibility to notify the user themselves. In the
above example, this would be the submitInvoice() method called upon each customer. One could
imagine more complex designs where only the final command executed notifies the user.

However, an alternative is to rely on the fact that the BackgroundService will automatically hint that
the Command representing the original interaction (to submitCustomerInvoices() in the example
above) should be persisted. This will be available if the related CommandContext and CommandService
domain services are configured, and the CommandService supports persistent commands. Note that
(non-ASF) Isis addons' command module does indeed provide such an implementation of
CommandService (as well as of the required BackgroundCommandService).

Thus, the original action can run a query to obtain it corresponding Command, and return this to the
user. The upshot is that the child Commands created by the BackgroundService will then be associated
with Command for the original action.

We could if we wanted write the above example as follows:

public Command submitCustomerInvoices() {
 for(Customer customer: customerRepository.findCustomersToInvoice()) {
 backgroundService.execute(customer).submitInvoice();
 }
 return commandContext.getCommand();
}
@Inject
CommandContext commandContext; ①

① the injected CommandContext domain service.

The user would be returned a domain object representing their action invocation.

4.3.4. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of BackgroundService is
automatically registered (it is annotated with @DomainService) so no further configuration is
required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.3.5. Related Services

This service is closely related to the CommandContext and also that service’s supporting
CommandService service.

The CommandContext service is responsible for providing a parent Command with which the background
Commands can then be associated as children, while the CommandService is responsible for persisting
those parent Command`s. The latter is analogous to the way in which the

42

http://github.com/isisaddons/isis-module-command
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

`BackgroundCommandService persists the child background `Command`s.

The implementations of CommandService and BackgroundCommandService go together; typically both
parent Command`s and child background `Command`s will be persisted in the same way. The (non-
ASF) Isis addons' command module provides implementations of both (see `CommandService and
BackgroundCommandService).

The CommandDtoServiceInternal is used to obtain a memento of the command such that it can be
persisted. (In earlier versions, MementoService was used for this purpose).

4.3.6. BackgroundCommandExec’n abstract class

The BackgroundCommandExecution (in isis-core) is an abstract template class provided by isis-core that
defines an abstract hook method to obtain background `Command`s to be executed:

public abstract class BackgroundCommandExecution
 extends AbstractIsisSessionTemplate {
 ...
 protected abstract List<? extends Command> findBackgroundCommandsToExecute();
 ...
}

The developer is required to implement this hook method in a subclass.

4.3.7. Quartz Scheduler Configuration

The last part of the puzzle is to actually run the (appropriate implementation of)
`BackgroundCommandExecution). This could be run in a batch job overnight, or run continually
by, say, the Quartz scheduler or by http://camel.apache.org]Apache Camel]. This section looks at
configuring Quartz.

If using (non-ASF) Isis addons' command module, then note that this already provides a suitable
concrete implementation, namely
org.isisaddons.module.command.dom.BackgroundCommandExecutionFromBackgroundCommandServiceJdo.
We therefore just need to schedule this to run as a Quartz job.

First, we need to define a Quartz job, for example:

import
org.isisaddons.module.command.dom.BackgroundCommandExecutionFromBackgroundCommandServi
ceJdo;
public class BackgroundCommandExecutionQuartzJob extends AbstractIsisQuartzJob {
 public BackgroundCommandExecutionQuartzJob() {
 super(new BackgroundCommandExecutionFromBackgroundCommandServiceJdo());
 }
}

where AbstractIsisQuartzJob is in turn the following boilerplate:

43

http://github.com/isisaddons/isis-module-command
rgfis.pdf#_rgfis_spi_CommandDtoServiceInternal
http://quartz-scheduler.org
http://camel.apache.org
http://github.com/isisaddons/isis-module-command

package domainapp.webapp.quartz;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
...
public class AbstractIsisQuartzJob implements Job {
 public static enum ConcurrentInstancesPolicy {
 SINGLE_INSTANCE_ONLY,
 MULTIPLE_INSTANCES
 }

 private final AbstractIsisSessionTemplate isisRunnable;
 private final ConcurrentInstancesPolicy concurrentInstancesPolicy;
 private boolean executing;

 public AbstractIsisQuartzJob(AbstractIsisSessionTemplate isisRunnable) {
 this(isisRunnable, ConcurrentInstancesPolicy.SINGLE_INSTANCE_ONLY);
 }
 public AbstractIsisQuartzJob(
 AbstractIsisSessionTemplate isisRunnable,
 ConcurrentInstancesPolicy concurrentInstancesPolicy) {
 this.isisRunnable = isisRunnable;
 this.concurrentInstancesPolicy = concurrentInstancesPolicy;
 }

 public void execute(final JobExecutionContext context)
 throws JobExecutionException {
 final AuthenticationSession authSession = newAuthSession(context);
 try {
 if(concurrentInstancesPolicy == ConcurrentInstancesPolicy
.SINGLE_INSTANCE_ONLY &&
 executing) {
 return;
 }
 executing = true;

 isisRunnable.execute(authSession, context);
 } finally {
 executing = false;
 }
 }

 AuthenticationSession newAuthSession(JobExecutionContext context) {
 String user = getKey(context, SchedulerConstants.USER_KEY);
 String rolesStr = getKey(context, SchedulerConstants.ROLES_KEY);
 String[] roles = Iterables.toArray(
 Splitter.on(",").split(rolesStr), String.class);
 return new SimpleSession(user, roles);
 }

44

 String getKey(JobExecutionContext context, String key) {
 return context.getMergedJobDataMap().getString(key);
 }
}

This job can then be configured to run using Quartz' quartz-config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<job-scheduling-data
 xmlns="http://www.quartz-scheduler.org/xml/JobSchedulingData"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.quartz-scheduler.org/xml/JobSchedulingData
http://www.quartz-scheduler.org/xml/job_scheduling_data_1_8.xsd"
 version="1.8">
 <schedule>
 <job>
 <name>BackgroundCommandExecutionJob</name>
 <group>Isis</group>
 <description>
 Poll and execute any background actions persisted by the
BackgroundActionServiceJdo domain service
 </description>
 <job-class>domainapp.webapp.quartz.BackgroundCommandExecutionQuartzJob</job-
class>
 <job-data-map>
 <entry>
 <key>webapp.scheduler.user</key>
 <value>scheduler_user</value>
 </entry>
 <entry>
 <key>webapp.scheduler.roles</key>
 <value>admin_role</value>
 </entry>
 </job-data-map>
 </job>
 <trigger>
 <cron>
 <name>BackgroundCommandExecutionJobEveryTenSeconds</name>
 <job-name>BackgroundCommandExecutionJob</job-name>
 <job-group>Isis</job-group>
 <cron-expression>0/10 * * * * ?</cron-expression>
 </cron>
 </trigger>
 </schedule>
</job-scheduling-data>

The remaining two pieces of configuration are the quartz.properties file:

45

org.quartz.scheduler.instanceName = SchedulerQuartzConfigXml
org.quartz.threadPool.threadCount = 1
org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore
org.quartz.plugin.jobInitializer.class
=org.quartz.plugins.xml.XMLSchedulingDataProcessorPlugin
org.quartz.plugin.jobInitializer.fileNames = webapp/scheduler/quartz-config.xml
org.quartz.plugin.jobInitializer.failOnFileNotFound = true

and the entry in web.xml for the Quartz servlet:

<servlet>
 <servlet-name>QuartzInitializer</servlet-name>
 <servlet-class>org.quartz.ee.servlet.QuartzInitializerServlet</servlet-class>
 <init-param>
 <param-name>config-file</param-name>
 <param-value>webapp/scheduler/quartz.properties</param-value>
 </init-param>
 <init-param>
 <param-name>shutdown-on-unload</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>start-scheduler-on-load</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

4.4. CommandContext
The CommandContext service is a request-scoped service that reifies the invocation of an action on a
domain object into an object itself. This reified information is encapsulated within the Command
object.

By default, the Command is held in-memory only; once the action invocation has completed, the
Command object is gone. The optional supporting CommandService enables the implementation of
Command to be pluggable. With an appropriate implementation (eg as provided by the (non-ASF) Isis
addons' command module’s CommandService) the Command may then be persisted.

As of 1.13.0, the primary use case for persistent Commands is in support of background commands;
they act as a parent to any background commands that can be persisted either explicitly using the
BackgroundService, or implicitly by way of the @Action#command() annotation.

In previous versions of the framework, persistent Commands also supported a number of other use
cases:

• they enable profiling of the running application (which actions are invoked then most often,

46

rgant.pdf#_rgant-RequestScoped
http://github.com/isisaddons/isis-module-command
http://github.com/isisaddons/isis-module-command
rgant.pdf#_rgant-Action_command

what is their response time)

• if a PublisherService or PublishingService (the latter now deprecated) is configured, they
provide better traceability as the Command is also correlated with any published events, again
through the unique transactionId GUID

• if a AuditerService or AuditingService (the latter now deprecated) is configured, they provide
better audit information, since the Command (the 'cause' of an action) can be correlated to the
audit records (the "effect" of the action) through the transactionId GUID

As of 1.13.0, these other uses cases are now more fully supported through the InteractionContext
service and persistent implementations of the Interaction object, eg as provided by the (non-ASF)
Isis addons' publishmq module.

4.4.1. Screencast

The screencast provides a run-through of the command (profiling) service, auditing service,
publishing service. It also shows how commands can be run in the background either explicitly by
scheduling through the background service or implicitly by way of a framework annotation.

Note that this screencast shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).

4.4.2. API & Implementation

The CommandContext request-scoped service defines the following very simple API:

@RequestScoped
public class CommandContext {
 @Programmatic
 public Command getCommand() { ... }
}

This class (o.a.i.applib.services.CommandContext) is also the default implementation. Under
normal circumstances there shouldn’t be any need to replace this implementation with another.

The Command type referenced above is in fact an interface, defined as:

47

http://github.com/isisaddons/isis-module-publishmq
https://www.youtube.com/watch?v=tqXUZkPB3EI
ugvw.pdf

public interface Command extends HasTransactionId {

 public abstract String getUser(); ①
 public abstract Timestamp getTimestamp(); ②

 public abstract Bookmark getTarget(); ③
 public abstract String getMemberIdentifier(); ④
 public abstract String getTargetClass(); ⑤
 public abstract String getTargetAction(); ⑥
 public String getArguments(); ⑦
 public String getMemento(); ⑧

 public ExecuteIn getExecuteIn(); ⑨
 public Executor getExecutor(); ⑩
 public Persistence getPersistence(); ⑪
 public boolean isPersistHint(); ⑫

 public abstract Timestamp getStartedAt(); ⑬
 public abstract Timestamp getCompletedAt(); ⑭
 public Command getParent(); ⑮

 public Bookmark getResult(); ⑯
 public String getException(); ⑰

 @Deprecated
 int next(final String sequenceAbbr); ⑱
}

① getUser() - is the user that initiated the action.

② getTimestamp() - the date/time at which this action was created.

③ getTarget() - bookmark of the target object (entity or service) on which this action was
performed

④ getMemberIdentifier() - holds a string representation of the invoked action

⑤ getTargetClass() - a human-friendly description of the class of the target object

⑥ getTargetAction() - a human-friendly name of the action invoked on the target object

⑦ getArguments() - a human-friendly description of the arguments with which the action was
invoked

⑧ getMemento() - a formal (XML or similar) specification of the action to invoke/being invoked

⑨ getExecuteIn() - whether this command is executed in the foreground or background

⑩ getExecutor() - the (current) executor of this command, either user, or background service, or
other (eg redirect after post).

⑪ getPersistence()- the policy controlling whether this command should ultimately be persisted
(either "persisted", "if hinted", or "not persisted")

⑫ isPersistHint() - whether that the command should be persisted, if persistence policy is "if

48

hinted".

⑬ getStartedAt() - the date/time at which this action started (same as timestamp property for
foreground commands)

⑭ getCompletedAt() - the date/time at which this action completed.

⑮ getParent() - for actions created through the BackgroundService, captures the parent action

⑯ getResult() - bookmark to object returned by action, if any

⑰ getException() - exception stack trace if action threw exception

⑱ No longer used by the framework; see instead InteractionContext and Interaction#next().

4.4.3. Usage

The typical way to indicate that an action should be treated as a command is to annotate it with the
@Action#command() annotation.

For example:

public class ToDoItem ... {
 @Action(command=CommandReification.ENABLED)
 public ToDoItem completed() { ... }
}

As an alternative to annotating every action with @Action#command(), alternatively
this can be configured as the default using isis.services.command.actions

configuration property.

See @Action#command() and runtime configuration for further details.

The @Action#command() annotation can also be used to specify whether the command should be
performed in the background, for example:

public class ToDoItem ... {
 @Command(executeIn=ExecuteIn.BACKGROUND)
 public ToDoItem scheduleImplicitly() {
 completeSlowly(3000);
 return this;
 }
}

When a background command is invoked, the user is returned the command object itself (to
provide a handle to the command being invoked).

This requires that an implementation of CommandService that persists the commands (such as the
(non-ASF) Isis addons' command module’s CommandService) is configured. It also requires that a
scheduler is configured to execute the background commands, see BackgroundCommandService).

49

rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Action_command
rgcfg.pdf#_rgcfg_configuring-core
rgant.pdf#_rgant-Action_command
http://github.com/isisaddons/isis-module-command

4.4.4. Interacting with the services

Typically domain objects will have little need to interact with the CommandContext and Command
directly; what is more useful is that these are persisted in support of the various use cases
identified above.

One case however where a domain object might want to obtain the Command is to determine whether
it has been invoked in the foreground, or in the background. It can do this using the
getExecutedIn() method:

Although not often needed, this then allows the domain object to access the Command object through
the CommandContext service. To expand th above example:

public class ToDoItem ... {
 @Action(
 command=CommandReification.ENABLED,
 commandExecuteIn=CommandExecuteIn.BACKGROUND
)
 public ToDoItem completed() {
 ...
 Command currentCommand = commandContext.getCommand();
 ...
 }
 @Inject
 CommandContext commandContext;
}

If run in the background, it might then notify the user (eg by email) if all work is done.

This leads us onto a related point, distinguishing the current effective user vs the originating "real"
user. When running in the foreground, the current user can be obtained from the UserService,
using:

String user = userService.getUser().getName();

If running in the background, however, then the current user will be the credentials of the
background process, for example as run by a Quartz scheduler job.

The domain object can still obtain the original ("effective") user that caused the job to be created,
using:

String user = commandContext.getCommand().getUser();

4.4.5. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of CommandContext

50

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.4.6. Related Services

The CommandContext service is very similar in nature to the InteactionContext, in that the Command
object accessed through it is very similar to the Interaction object obtained from the
InteractionContext. The principle distinction is that while Command represents the intention to invoke
an action or edit a property, the Interaction (and contained Executions) represents the actual
execution.

Most of the time a Command will be followed directly by its corresponding Interaction. However, if
the Command is annotated to run in the background (using @Action#commandExecuteIn(), or is explicitly
created through the BackgroundService, then the actual interaction/execution is deferred until some
other mechanism invokes the command (eg as described here). The persistence of background
commands requires a configured BackgroundCommandService) to actually persist such commands for
execution.

Commands - even if executed in the foreground - can also be persisted by way of the CommandService.
Implementations of CommandService and BackgroundCommandService are intended to go together, so
that child Commands persistent (to be executed in the background) can be associated with their parent
Commands (executed in the foreground, with the background Command created explicitly through the
BackgroundService).

4.5. InteractionContext
The InteractionContext is a request-scoped domain service that is used to obtain the current
Interaction.

An Interaction generally consists of a single top-level Execution, either to invoke an action or to edit
a property. If that top-level action or property uses WrapperFactory to invoke child
actions/properties, then those sub-executions are captured as a call-graph. The Execution is thus a
graph structure.

If a bulk action is performed (as per an action annotated using @Action#invokeOn()), then this will
result in multiple Interactions, one per selected object (not one Interaction with multiple top-level
Executions).

It is possible for Interaction.Executions to be persisted; this is supported by the (non-ASF) Isis
addons' publishmq module, for example. Persistent Interactions support several use cases:

• they enable profiling of the running application (which actions are invoked then most often,
what is their response time)

• if auditing is configured (using either auditing or AuditerService), they provide better audit
information, since the Interaction.Execution captures the 'cause' of an interaction and can be
correlated to the audit records (the "effect" of the interaction) by way of the transactionId

51

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgant.pdf#_rgant-Action_command
ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
rgant.pdf#_rgant-Action_invokeOn
http://github.com/isisaddons/isis-module-publishmq
http://github.com/isisaddons/isis-module-publishmq
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId

4.5.1. API & Implementation

The public API of the service consists of several related classes:

• InteractionContext domain service itself:

• Interaction class, obtainable from the InteractionContext

• Execution class, obtainable from the Interaction.

The Execution class itself is abstract; there are two subclasses, ActionInvocation and PropertyEdit.

InteractionContext

The public API of the InteractionContext domain service itself consists of simply:

@RequestScoped
public class InteractionContext {
 public Interaction getInteraction(); ①
}

① Returns the currently active {@link Interaction} for this thread.

This class is concrete (is also the implementation).

Interaction

The public API of the Interaction class consists of:

public class Interaction {
 public UUID getTransactionId(); ①
 public Execution getPriorExecution(); ②
 public Execution getCurrentExecution(); ③
 public List<Execution> getExecutions(); ④
 public int next(final String sequenceId); ⑤
}

① The unique identifier of this interaction. This will be the same value as held in Command
(obtainable from CommandContext).

② The member Execution (action invocation or property edit) that preceded the current one.

③ The current execution.

④ * Returns a (list of) execution}s in the order that they were pushed. Generally there will be just
one entry in this list, but additional entries may arise from the use of mixins/contributions when
re-rendering a modified object.

⑤ Generates numbers in a named sequence. Used by the framework both to number successive
interaction Executions and for events published by the PublisherService.

This class is concrete (is also the implementation).

52

Interaction.Execution

The Interaction.Execution (static nested) class represents an action invocation/property edit as a
node in a call-stack execution graph. Sub-executions can be performed using the WrapperFactory.

It has the following public API:

public abstract class Execution {
 public Interaction getInteraction(); ①
 public InteractionType getInteractionType(); ②
 public String getMemberIdentifier(); ③
 public Object getTarget(); ④

 public String getTargetClass(); ⑤
 public String getTargetMember();

 public Execution getParent(); ⑥
 public List<Execution> getChildren();

 public AbstractDomainEvent getEvent(); ⑦

 public Timestamp getStartedAt(); ⑧
 public Timestamp getCompletedAt();

 public Object getReturned(); ⑨
 public Exception getThrew();

 public T getDto(); ⑩
}

① The owning Interaction.

② Whether this is an action invocation or a property edit.

③ A string uniquely identifying the action or property (similar to Javadoc syntax).

④ The object on which the action is being invoked or property edited. In the case of a mixin this
will be the mixin object itself (rather than the mixed-in object).

⑤ A human-friendly description of the class of the target object, and of the name of the action
invoked/property edited on the target object.

⑥ The parent action/property that invoked this action/property edit (if any), and any
actions/property edits made in turn via the WrapperFactory.

⑦ The domain event fired via the EventBusService representing the execution of this action
invocation/property edit.

⑧ The date/time at which this execution started/completed.

⑨ The object returned by the action invocation/property edit, or the exception thrown. For void
methods and for actions returning collections, the value will be null.

⑩ A DTO (instance of the "ixn" schema) being a serializable representation of this action
invocation/property edit.

53

rgcms.pdf#_rgcms_schema_ixn

There are two concrete subclasses of Execution.

The first is ActionInvocation, representing the execution of an action being invoked:

public class ActionInvocation extends Execution {
 public List<Object> getArgs(); ①
}

① The objects passed in as the arguments to the action’s parameters. Any of these could be null.

The second is PropertyEdit, and naturally enough represents the execution of a property being
edited:

public class PropertyEdit extends Execution {
 public Object getNewValue(); ①
}

① The object used as the new value of the property. Could be null if the property is being cleared.

4.5.2. Interacting with the services

Typically domain objects will have little need to interact with the InteractionContext and
Interaction directly. The services are used within the framework however, primarily to support the
PublisherService SPI, and to emit domain events over the EventBusService.

4.5.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' default implementation of
InteractionContext class is automatically registered (it is annotated with @DomainService) so no
further configuration is required.

The framework also takes responsibility for instantiating the Interaction, using the FactoryService.

Unlike the similar CommandContext (discussed below) there is no domain service to
different implementations of Interaction to be used. If this were to be needed,
then a custom implementation of FactoryService could always used).

4.5.4. Related Classes

This service is very similar in nature to CommandContext, in that the Interaction object accessed
through it is very similar to the Command object obtained from the CommandContext. The principle
distinction is that while Command represents the intention to invoke an action or edit a property, the
Interaction (and contained Executions) represents the actual execution.

Most of the time a Command will be followed directly by its corresponding Interaction. However, if
the Command is annotated to run in the background (using @Action#commandExecuteIn(), or is explicitly
created through the BackgroundService, then the actual interaction/execution is deferred until some

54

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-Action_command

other mechanism invokes the command (eg as described here).

4.6. MessageService
The MessageService allows domain objects to raise information, warning or error messages. These
messages can either be simple strings, or can be translated.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

4.6.1. API and Usage

The API of MessageService is:

public interface MessageService {

 void informUser(String message);
①
 String informUser(TranslatableString message, Class<?> contextClass, String
contextMethod); ②

 void warnUser(String message);
③
 String warnUser(TranslatableString message, Class<?> contextClass, String
contextMethod); ④

 void raiseError(String message);
⑤
 String raiseError(TranslatableString message, Class<?> contextClass, String
contextMethod); ⑥
 ...
}

① display as a transient message to the user (not requiring acknowledgement). In the Wicket
viewer this is implemented as a toast that automatically disappears after a period of time.

② ditto, but with translatable string, for i18n support.

③ warn the user about a situation with the specified message. In the Wicket viewer this is
implemented as a toast that must be closed by the end-user.

④ ditto, but with translatable string, for i18n support.

⑤ show the user an unexpected application error. In the Wicket viewer this is implemented as a
toast (with a different colour) that must be closed by the end-user.

⑥ ditto, but with translatable string, for i18n support.

For example:

55

ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
ugvw.pdf
ugvw.pdf
ugbtb.pdf#_ugbtb_i18n
ugvw.pdf
ugvw.pdf

public Order addItem(Product product, @ParameterLayout(named="Quantity") int quantity)
{
 if(productRepository.stockLevel(product) == 0) {
 messageService.warnUser(
 product.getDescription() + " out of stock; order fulfillment may be
delayed");
 }
 ...
}

4.6.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.runtime.services.message.MessageServiceInternalDefault).

4.6.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of MessageService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.7. SessionManagementService
The SessionManagementService provides the ability to programmatically manage sessions. The
primary use case is for fixture scripts or other routines that are invoked from the UI and which
create or modify large amounts of data. A classic example is migrating data from one system to
another.

4.7.1. API

The API of SessionManagementService is:

public interface SessionManagementService {
 void nextSession();
}

Normally, the framework will automatically start a session and then a transaction before each user
interaction (action invocation or property modification), and wil then commit that transaction and
close the session after the interaction has completed. If the interaction throws an exception then
the transaction is aborted.

The nextSession() method allows a domain object to commit the transaction, close the session, then
open a new session and start a new transaction.

56

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

Any domain objects that were created in the "previous" session are no longer
usable, and must not be rendered in the UI.

4.7.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.runtime.services.xactn.SessionManagementServiceDefault).

4.7.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of
SessionManagementService service is automatically registered and injected (it is annotated with
@DomainService) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.8. TitleService
The TitleService provides methods to programmatically obtain the title and icon of a domain
object.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

4.8.1. API

The API of TitleService is:

public interface PresentationService {
 String titleOf(Object domainObject); ①
 String iconNameOf(Object domainObject); ②
}

① return the title of the object, as rendered in the UI by the Apache Isis viewers.

② return the icon name of the object, as rendered in the UI by the Apache Isis viewers.

4.8.2. Usage

By way of example, here’s some code based on a system for managing government benefits:

57

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

public class QualifiedAdult {

 private Customer qualifying;

 public String title() {
 return "QA for " + titleService.titleOf(qualifying);
 }

 ...
 @Inject
 TitleService titleService;
}

In this example, whatever the title of a Customer, it is reused within the title of that customer’s
QualifiedAdult object.

4.8.3. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.metamodel.services.title.TitleServiceDefault).

4.8.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of TitleService service
is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.9. TransactionService
The TransactionService provides a small number of methods to allow domain objects to influence
user transactions.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

4.9.1. API

The API of TransactionService is:

58

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

public interface TransactionService {
 Transaction currentTransaction(); ①
 void nextTransaction(); ②
 void flushTransaction(); ③
}

① to obtain a handle on the current Transaction, discussed further below

② The framework automatically start a transaction before each user interaction (action invocation
or property edit), and will commit that transaction after the interaction has completed. Under
certain circumstances (eg actions used to perform data migration, say, or for large fixture
scripts), it can be helpful to programmatically complete one transaction and start another one.

③ If the user interaction creates/persists an object or deletes an object (eg using the
RepositoryService's persist() or delete() methods), then the framework actually queues up the
work and only performs the persistence command either at the end of the transaction or
immediately prior to the next query. Performing a flush will cause any pending calls to be
performed immediately.

The nextTransaction() is also used by the Wicket viewer's support for bulk actions; each action is
invoked in its own transaction.

The Transaction object - as obtained by currentTransaction() method, above - is a minimal wrapper
around the underlying database transaction. Its API is:

public interface Transaction {
 UUID getTransactionId(); ①
 int getSequence(); ②
 void flush(); ③
 void clearAbortCause(); ④
}

① is a unique identifier for the interaction/request, as defined by the HasTransactionId mixin.

② there can actually be multiple transactions within such a request/interaction; the sequence is a
(0-based) is used to distinguish such.

③ as per TransactionService#flushTransaction() described above.

④ If the cause has been rendered higher up in the stack, then clear the cause so that it won’t be
picked up and rendered elsewhere.

59

ugvw.pdf
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId

One place where clearAboutCause() may be useful is for application-level
handling of SQL integrity exceptions, eg as described in ISIS-1476:

try {
 // do something...
} catch (final JDODataStoreException e) {
 if (Iterables.filter(Throwables.getCausalChain(e),
 SQLIntegrityConstraintViolationException.class) != null) {
 // ignore
 this.transactionService.currentTransaction().
clearAbortCause();
 } else {
 throw e;
 }
}

4.9.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.metamodel.services.xactn.TransactionServiceInternalDefault).

4.9.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of TransactionService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

4.10. WrapperFactory
The WrapperFactory provides the ability to enforce business rules for programmatic interactions
between domain objects. If there is a (lack-of-) trust boundary between the caller and callee — eg if
they reside in different modules — then the wrapper factory is a useful mechanism to ensure that
any business constraints defined by te callee are honoured.

For example, if the calling object attempts to modify an unmodifiable property on the target object,
then an exception will be thrown. Said another way: interactions are performed "as if" they are
through the viewer.

For a discussion of the use of the WrapperFactory within integration tests (the
primary or at least original use case for this service) can be found here

This capability goes beyond enforcing the (imperative) constraints within the hideXxx(),
disableXxx() and validateXxx() supporting methods; it also enforces (declarative) constraints such

60

https://issues.apache.org/jira/browse/ISIS-1476
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugtst.pdf#_ugtst_integ-test-support_wrapper-factory

as those represented by annotations, eg @MaxLength or @Regex.

This capability is frequently used within integration tests, but can also be used in production code.
(There are analogies that can be drawn here with the way that JEE beans can interact through an
EJB local interface).

4.10.1. API

The API provided by the service is:

public interface WrapperFactory {
 @Programmatic
 <T> T wrap(T domainObject); ①
 @Programmatic
 <T> T unwrap(T possibleWrappedDomainObject); ②
 @Programmatic
 <T> boolean isWrapper(T possibleWrappedDomainObject); ③

 public static enum ExecutionMode { ④
 EXECUTE(true,true),
 SKIP_RULES(false, true), ⑤
 NO_EXECUTE(true, false); ⑥
 }
 @Programmatic
 <T> T wrap(T domainObject, ExecutionMode mode); ⑦
 @Programmatic
 <T> T wrapNoExecute(T domainObject); ⑧
 @Programmatic
 <T> T wrapSkipRules(T domainObject); ⑨
 ...
 }

① wraps the underlying domain object. If it is already wrapped, returns the object back
unchanged.

② Obtains the underlying domain object, if wrapped. If the object is not wrapped, returns back
unchanged.

③ whether the supplied object has been wrapped.

④ enumerates how the wrapper interacts with the underlying domain object.

⑤ validate all business rules and then execute.

⑥ skip all business rules and then execute (including creating commands and firing pre- and post-
execute domain events).

⑦ validate all business rules (including those from domain events) but do not execute.

⑧ convenience method to invoke wrap(…) with ExecuteMode#NO_EXECUTE (make this feature more
discoverable)

⑨ convenience method to invoke wrap(…) with ExecuteMode#SKIP_RULES (make this feature more
discoverable)

61

ugtst.pdf#_ugtst_integ-test-support
rgant.pdf#_rgant-Action_command
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Action_domainEvent

The service works by returning a "wrapper" around a supplied domain object (a javassist proxy),
and it is this wrapper that ensures that the hide/disable/validate rules implies by the Apache Isis
programming model are enforced. The wrapper can be interacted with as follows:

• a get…() method for properties or collections

• a set…() method for properties

• an addTo…() or removeFrom…() method for collections

• any action

Calling any of the above methods may result in a (subclass of) InteractionException if the object
disallows it. For example, if a property is annotated with @Hidden then a HiddenException will be
thrown. Similarly if an action has a validateXxx() method and the supplied arguments are invalid
then an InvalidException will be thrown.

In addition, the following methods may also be called:

• the title() and toString() methods

• any default…(), choices…() or autoComplete…() methods

An exception will be thrown if any other methods are thrown.

4.10.2. Usage

The caller will typically obtain the target object (eg from some repository) and then use the injected
WrapperFactory to wrap it before interacting with it.

For example:

public class CustomerAgent {
 @Action
 public void refundOrder(final Order order) {
 final Order wrappedOrder = wrapperFactory.wrap(order);
 try {
 wrappedOrder.refund();
 } catch(InteractionException ex) { ①
 container.raiseError(ex.getMessage()); ②
 return;
 }
 }
 ...
 @Inject
 WrapperFactory wrapperFactory;
 @Inject
 DomainObjectContainer container;
}

① if any constraints on the Order’s `refund() action would be violated, then …

② … these will be trapped and raised to the user as a warning.

62

http://www.javassist.org
rgcms.pdf#_rgcms_methods_reserved_title
rgcms.pdf#_rgcms_methods_prefixes_default
rgcms.pdf#_rgcms_methods_prefixes_default
rgcms.pdf#_rgcms_methods_prefixes_default
rgcms.pdf#_rgcms_methods_prefixes_choices
rgcms.pdf#_rgcms_methods_prefixes_choices
rgcms.pdf#_rgcms_methods_prefixes_choices
rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete
rgcms.pdf#_rgcms_methods_prefixes_autoComplete

It ought to be possible to implement an ExceptionRecognizers that would allow the
above boilerplate to be removed. This recognizer service would recognize the
InteractionException and convert to a suitable message.

At the time of writing Apache Isis does not provide an out-of-the-box
implementation of such an ExceptionRecognizer; but it should be simple enough to
write one…

4.10.3. Listener API

The WrapperFactory also provides a listener API to allow other services to listen in on interactions.

public interface WrapperFactory {
 ...
 @Programmatic
 List<InteractionListener> getListeners(); ①
 @Programmatic
 public boolean addInteractionListener(InteractionListener listener); ②
 @Programmatic
 public boolean removeInteractionListener(InteractionListener listener); ③
 @Programmatic
 public void notifyListeners(InteractionEvent ev); ④
}

① all InteractionListeners that have been registered.

② registers an InteractionListener, to be notified of interactions on all wrappers. The listener will
be notified of interactions even on wrappers created before the listener was installed. (From an
implementation perspective this is because the wrappers delegate back to the container to fire
the events).

③ remove an InteractionListener, to no longer be notified of interactions on wrappers.

④ used by the framework itself

The original intent of this API was to enable test transcripts to be captured (in a BDD-like fashion)
from integration tests. No such feature has yet been implemented however. Also, the capabilities
have by and large been superceded by Apache Isis' support for domain events. We may therefore
deprecate this API in the future.

4.10.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of WrapperFactory
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

63

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

Chapter 5. Application Layer SPI
Domain service SPIs influence how the framework handles application layer concerns, for example
which home page to render to the end-user.

The table below summarizes the application layer SPIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 3. Application Layer SPI

API Description Implemen
tation

Notes

o.a.i.applib.
services.background
BackgroundCommandServi
ce

Persisted a memento of an action invocation
such that it can be executed asynchronously ("in
the background") eg by a scheduler.

Background
CommandSer
viceJdo
o.ia.m.com
mand
isis-
module-
command

related
services:
Background
CommandSer
vice-
JdoContrib
utions,
Background
CommandSer
vice-
JdoReposit
ory

o.a.i.applib.
services.command.spi
CommandService

Service to act as a factory and repository (create
and save) of command instances, ie
representations of an action invocation. Used
for command/auditing and background services.

CommandSer
viceJdo
o.ia.m.com
mand
isis-
module-
command

related
services:
CommandSer
vice-
`JdoContri
butions`,
`Comman
dService-`
JdoReposit
ory

o.a.i.applib.
services.homepage
HomePageProviderServic
e

Returns the home page object, if any is defined. HomePagePr
ovider
ServiceDef
ault
o.a.i.core
isis-core-
runtime

Used by
the default
implement
ation of
RoutingSer
vice.

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

64

http://www.isisaddons.org

5.1. BackgroundCommandService
The BackgroundCommandService (SPI) service supports the BackgroundService (API) service, persisting
action invocations as commands such that they can subsequently be invoked in the background.

The BackgroundService is responsible for capturing a memento representing the action invocation,
and then hands off to the BackgroundCommandService BackgroundCommandService to actually persist it.

The persisting of commands is only half the story; there needs to be a separate process to read the
commands and execute them. The abstract BackgroundCommandExecution provides a mechanism to
execute such commands. This can be considered an API, albeit "internal" because the
implementation relies on internals of the framework.

5.1.1. SPI

The SPI of the BackgroundCommandService is:

public interface BackgroundCommandService {
 void schedule(
 ActionInvocationMemento aim, ①
 Command parentCommand, ②
 String targetClassName,
 String targetActionName,
 String targetArgs);

}

① is a wrapper around a MementoService's Memento, capturing the details of the action invocation to
be retained (eg persisted to a database) so that it can be executed at a later time

② reference to the parent Command requesting the action be performed as a background command.
This allows information such as the initiating user to be obtained.

The API of ActionInvocationMemento in turn is:

public class ActionInvocationMemento {
 public String getActionId() { ... }
 public String getTargetClassName() { ... }
 public String getTargetActionName() { ... }
 public Bookmark getTarget() { ... }
 public int getNumArgs() { ... }
 public Class<?> getArgType(int num) throws ClassNotFoundException { ... }
 public <T> T getArg(int num, Class<T> type) { ... }

 public String asMementoString() { ... } ①
}

① lets the BackgroundCommandService implementation convert the action invocation into a simple
string.

65

5.1.2. "Internal" SPI

The BackgroundCommandExecution (in isis-core) is an abstract template class for headless access, that
defines an abstract hook method to obtain background `Command`s to be executed:

public abstract class BackgroundCommandExecution
 extends AbstractIsisSessionTemplate {
 ...
 protected abstract List<? extends Command> findBackgroundCommandsToExecute();
 ...
}

The developer is required to implement this hook method in a subclass.

5.1.3. Implementation

The (non-ASF) Isis addons' command module provides an implementation
(org.isisaddons.module.command.dom.BackgroundCommandServiceJdo) that persists Commands using the
JDO/DataNucleus object store. It further provides a number of supporting services:

• org.isisaddons.module.command.dom.BackgroundCommandServiceJdoRepository is a repository to
search for persisted background Commands

• org.isisaddons.module.command.dom.BackgroundCommandServiceJdoContributions contributes
actions for searching for persisted child and sibling Commands.

The module also provides a concrete subclass of BackgroundCommandExecution that knows how to
query for persisted (background) `Command`s such that they can be executed by a scheduler.

Details of setting up the Quartz scheduler to actually execute these persisted
commands can be found on the BackgroundService page.

5.1.4. Usage

Background commands can be created either declaratively or imperatively.

The declarative approach involves annotating an action using @Action#command() with
@Action#commandExecuteIn=CommandExecuteIn.BACKGROUND.

The imperative approach involves explicitly calling the BackgroundService from within domain
object’s action.

5.1.5. Registering the Services

The (non-ASF) Isis addons' command module provides an implementation of this service
(BackgroundCommandService), and also provides a number of related domain services
(BackgroundCommandServiceJdo, BackgroundCommandJdoRepository and
BackgroundCommandServiceJdoContributions). This module also provides service implementations of
the CommandService.

66

ugbtb.pdf#_ugbtb_headless-access_AbstractIsisSessionTemplate
http://github.com/isisaddons/isis-module-command
rgant.pdf#_rgant-Action_command
http://github.com/isisaddons/isis-module-command

Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

If contributions are not required in the UI, these can be suppressed either using security or by
implementing a vetoing subscriber.

5.1.6. Related Services

As discussed above, this service supports the BackgroundService , persisting `Command`s such that
they can be executed in the background.

There is also a tie-up with the CommandContext and its supporting CommandService domain service. The
CommandContext service is responsible for providing a parent Command with which the background
Command`s can then be associated as children, while the `CommandService is responsible for
persisting those parent Command`s (analogous to the way in which the `BackgroundCommandService
persists the child background Command`s). The `BackgroundCommandService ensures that these
background Command`s are associated with the parent "foreground" `Command.

What that means is that the implementations of CommandService and BackgroundCommandService go
together, hence both implemented in the (non-ASF) Isis addons' command module.).

5.2. CommandService
The CommandService service supports the CommandContext service such that Command objects (that reify
the invocation of an action/edit of a property on a domain object) can be persisted.

As of 1.13.0, the primary use case for persistent Commands is in support of background commands;
they act as a parent to any background commands that can be persisted either explicitly using the
BackgroundService, or implicitly by way of the @Action#command() annotation.

In previous versions of the framework, persistent Commands also supported a number of other use
cases:

• they enable profiling of the running application (which actions are invoked then most often,
what is their response time)

• if PublisherService or PublishingService (latter deprecated) is configured, they provide better
traceability as the Command is also correlated with any published events, again through the
unique transactionId GUID

• if AuditerService or AuditingService (latter deprecated) is configured, they provide better audit
information, since the Command (the 'cause' of an action) can be correlated to the audit records
(the "effect" of the action) through the transactionId GUID

As of 1.13.0, these other uses cases are now more fully supported through the InteractionContext
service and persistent implementations of the Interaction object, eg as provided by the (non-ASF)
Isis addons' publishmq module.

67

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility
http://github.com/isisaddons/isis-module-command
rgant.pdf#_rgant-Action_command
http://github.com/isisaddons/isis-module-publishmq

5.2.1. Screencast

The screencast below provides a run-through of the command (profiling) service, auditing service,
publishing service. It also shows how commands can be run in the background either explicitly by
scheduling through the background service or implicitly by way of a framework annotation.

Note that this screencast shows an earlier version of the Wicket viewer UI
(specifically, pre 1.8.0).

5.2.2. SPI

The CommandService service defines the following very simple API:

public interface CommandService {
 Command create(); ①
 @Deprecated
 void startTransaction(Command command, UUID transactionId); ②
 boolean persistIfPossible(Command command); ③
 void complete(Command command); ④
}

① Instantiate the appropriate instance of the Command (as defined by the CommandContext service). Its
members will be populated automatically by the framework.

② this method (as of 1.13.0) is NO LONGER CALLED and is deprecated: the framework
automatically populates the Command's timestamp, user and transactionId fields, so there is no
need for the service implementation to initialize any of these. In particular, the Command will
already have been initialized with the provided transactionId argument.

③ Set the hint that the Command should be persisted if possible (when completed, see below).

④ "Complete" the command, typically meaning that the command should be persisted it if its
Command#getPersistence() flag and persistence hint (Command#isPersistHint()) indicate that it
should be.

The framework will automatically have set the completedAt property of the Command.

5.2.3. Implementation

The (non-ASF) Isis addons' command module provides an implementation
(org.isisaddons.module.command.dom.CommandServiceJdo) that persists Commands using the
JDO/DataNucleus object store. It further provides a number of supporting services:

• org.isisaddons.module.command.dom.CommandServiceJdoRepository is a repository to search for
persisted Commands

• org.isisaddons.module.command.dom.CommandServiceJdoContributions contributes actions for
searching for persisted child and sibling Commands.

68

https://www.youtube.com/watch?v=tqXUZkPB3EI
ugvw.pdf
http://github.com/isisaddons/isis-module-command

5.2.4. Usage

The typical way to indicate that an action should be reified into a Command is by annotating the
action using @Action#command().

5.2.5. Registering the Services

The (non-ASF) Isis addons' command module provides an implementation of this service
(CommandService), and also provides a number of related domain services (CommandJdoRepository and
CommandServiceJdoContributions). This module also provides service implementations of the
BackgroundCommandService.

Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

If contributions are not required in the UI, these can be suppressed either using security or by
implementing a vetoing subscriber.

5.2.6. Related Services

As discussed above, this service supports the CommandContext, providing the ability for Command
objects to be persisted. This is closely related to the BackgroundCommandServicethat allows the
BackgroundService to schedule commands for background/asynchronous execution.

The implementations of CommandService and BackgroundCommandService are intended to go together,
so that persistent parent `Command`s can be associated with their child background
`Command`s.

The services provided by this module combines very well with the <code>AuditingService</code>. The
<code>CommandService</code> captures the _cause of an interaction (an action was invoked,
a property was edited), while the <code>AuditingService3</code> captures the effect of
that interaction in terms of changed state.

You may also want to configure the PublishingService.

All three of these services collaborate implicitly by way of the HasTransactionId interface.

5.3. HomePageProviderService
This service simply provides access to the home page object (if any) that is returned from the
domain service action annotated with @HomePage.

It is originally introduced to support the default implementation of RoutingService, but was
factored out to support alternative implementations of that service (and may be useful for other
use cases).

69

rgant.pdf#_rgant-Action_command
http://github.com/isisaddons/isis-module-command
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId
rgant.pdf#_rgant-HomePage

5.3.1. API & Implementation

The API defined by HomePageProviderService is:

@DomainService(nature = NatureOfService.DOMAIN)
public interface HomePageProviderService {
 @Programmatic
 Object homePage();
}

The default implementation is provided by
o.a.i.core.runtime.services.homepage.HomePageProviderServiceDefault.

5.3.2. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of
HomePageProviderService is automatically registered (it is annotated with @DomainService) so no
further configuration is required.

70

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

Chapter 6. Core/Domain API
The core/domain APIs provide general-purpose services to the domain objects, for example
obtaining the current time or user, or instantiating domain objects.

The table below summarizes the core/domain APIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 4. Core/Domain Layer API

API Description Implemen
tation

Notes

o.a.i.applib.
services.clock
ClockService

Access the current time (and for testing, allow
the time to be changed)

ClockServi
ce
o.a.i.core
isis-core-
applib

API is also
a concrete
class.

o.a.i.applib.
services.config
ConfigurationService

Access configuration properties (eg from
isis.properties file)

Configurat
ionService
-
Default
o.a.i.core
isis-core-
runtime

The
Configurat
ionService
Menu
exposes
the
allConfigu
rationProp
erties
action in
the user
interface.
+
Supercedes
methods in
DomainObje
ctContaine
r.

o.a.i.applib
DomainObjectContainer

Miscellaneous functions, eg obtain title of object. DomainObje
ctContaine
r-
Default
o.a.i.core
isis-core-
metamodel

o.a.i.applib.
services.eventbus
EventBusService

Programmatically post events to the internal
event bus. Also used by Apache Isis itself to
broadcast domain events: * Action#domainEvent()
* Property#domainEvent() *
Collection#domainEvent()

EventBusSe
rviceJdo
o.a.i.core
isis-core-
runtime

71

http://www.isisaddons.org
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgant.pdf#_rgant-Collection_domainEvent

API Description Implemen
tation

Notes

o.a.i.applib.
services.factory
FactoryService

Methods to instantiate and initialize domain
objects

FactorySer
vice-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

o.a.i.applib.
services.scratchpad
Scratchpad

Request-scoped service for interchanging
information between and aggregating over
multiple method calls; in particular for use by
"bulk" actions (invoking of an action for all
elements of a collection)

Scratchpad
o.a.i.core
isis-core-
applib

API is also
a concrete
class

o.a.i.applib.
services.xactn
UserService

Methods to access the currently-logged on user. UserServic
e-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

There is also a number of deprecated domain services.

Table 5. Deprecated Domain Services

API Description Implementation Notes

o.a.i.applib.
annotation
Bulk.InteractionContex
t

Request-scoped access
to whether action is
invoked on object
and/or on collection of
objects

Bulk.InteractionContex
t
o.a.i.core
isis-core-applib

Replaced by
ActionInvocationContex
t

Key:

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

72

6.1. ClockService
Most applications deal with dates and times in one way or another. For example, if an Order is
placed, then the Customer may have 30 days to pay the Invoice, otherwise a penalty may be levied.

However, such date/time related functionality can quickly complicate automated testing:
"today+30" will be a different value every time the test is run.

Even disregarding testing, there may be a requirement to ensure that date/times are obtained from
an NNTP server (rather than the system PC). While instantiating a java.util.Date to current the
current time is painless enough, we would not want complex technical logic for querying an NNTP
server spread around domain logic code.

Therefore it’s common to provide a domain service whose responsibility is to provide the current
time. This service can be injected into any domain object (and can be mocked out for unit testing).
Apache Isis provides such a facade through the ClockService.

6.1.1. API & Implementation

The API defined by ClockService is:

@DomainService(nature = NatureOfService.DOMAIN)
public class ClockService {
 @Programmatic
 public LocalDate now() { ... }
 @Programmatic
 public LocalDateTime nowAsLocalDateTime() { ... }
 @Programmatic
 public DateTime nowAsDateTime() { ... }
 @Programmatic
 public Timestamp nowAsJavaSqlTimestamp() { ... }
 @Programmatic
 public long nowAsMillis() { ... }
}

This class (o.a.i.applib.services.clock.ClockService) is also the default implementation. The time
provided by this default implementation is based on the system clock.

6.1.2. Testing Support

The default ClockService implementation in fact simply delegates to another class defined in the
API, namely the o.a.i.applib.clock.Clock, an abstract singleton class. It is not recommended that
your code use the Clock directly, but you should understand how this all works:

• there are two subclasses implementations Clock, namely SystemClock and FixtureClock.

• the first implementation that is instantiated registers itself as the singleton.

• if running in production (server) mode, then (unless another implementation has beaten it to
the punch) the framework will instantiate the `SystemClock. Once instantiated this cannot be

73

rgcfg.pdf#_rgcfg_deployment-types

replaced.

• if running in prototype mode, then the
framework will instead instantiate <code>FixtureClock</code>. This _can be replaced if
required.

The FixtureClock will behave as the system clock, unless its is explicitly set using
FixtureClock#setDate(…) or FixtureClock#setTime(…) and so forth.

Alternative Implementations

Suppose you want (as discussed in the introduction to this service) to use a clock that delegates to
NNTP. For most domain services this would amount to implementing the appropriate service and
registering in isis.properties so that it is used in preference to any implementations provided by
default by the framework.

In the case of the ClockService, though, this approach (unfortunately) will not work, because parts
of Apache Isis (still) delegate to the Clock singleton rather than using the ClockService domain
service.

The workaround, therefore, is to implement your functionality as a subclass of Clock. You can write
a domain service that will ensure that your implementation is used ahead of any implementations
provided by the framework.

For example:

@DomainService(nature=NatureOfService.DOMAIN)
public class NntpClockServiceInitializer {
 @Programmatic
 @PostConstruct
 public void postConstruct(Map<String,String> properties) {
 new NntpClock(properties); ①
 }
 private static class NntpClock extends Clock {
 NntpClock(Map<String,String> properties) { ... } ②
 protected long time() { ... } ③
 ... NNTP stuff here ...
 }
 }
}

① enough to simply instantiate the Clock; it will register itself as singleton

② connect to NNTP service using configuration properties from isis.properties

③ call to NNTP service here

6.1.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of ClockService is

74

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

automatically registered (it is annotated with @DomainService) so no further configuration is
required.

If you want to use a different implementation of Clock, eg delegating to NNTP, then do not register
directly, but instead subclass from o.a.i.applib.clock.Clock singleton (as described in the section
above).

6.2. ConfigurationService
The ConfigurationService allows domain objects to read the configuration properties aggregated
from the various configuration files.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

6.2.1. API and Usage

The API of ConfigurationService is:

public interface ConfigurationService {

 String getProperty(String name); ①
 String getProperty(String name, String defaultValue); ②
 List<String> getPropertyNames(); ③
 Set<ConfigurationProperty> allProperties(); ④

}

① Return the configuration property with the specified name; else return null.

② Return the configuration property with the specified name; if it doesn’t exist then return the
specified default value.

③ Return the names of all the available properties.

④ Returns all properties, each as an instance of the ConfigurationProperty view model.

For example, here’s a fictitious service that might wrap Twitter4J. say:

75

rgcfg.pdf#_rgcfg_configuration-files
http://twitter4j.org/en/configuration.html

@DomainService(nature=NatureOfService.DOMAIN)
public class TweetService {
 @Programmatic
 @PostConstruct
 public void init() {
 this.oauthConsumerKey = configurationService.getProperty
("tweetservice.oauth.consumerKey");
 this.oauthConsumerSecret = configurationService.getProperty
("tweetservice.oauth.consumerSecret");
 this.oauthAccessToken = configurationService.getProperty
("tweetservice.oauth.accessToken");
 this.oauthAccessTokenSecret = configurationService.getProperty
("tweetservice.oauth.accessTokenSecret");
 }
 ...
 @Inject
 ConfigurationService configurationService;
}

If you do have a domain service that needs to access properties, then note that an
alternative is to define a @PostConstruct method and pass in a Map<String,String>
of properties. The two techniques are almost identical; it’s mostly a matter of
taste.

6.2.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.runtime.services.config.ConfigurationServiceDefault).

6.2.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of ConfigurationService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

6.2.4. Related services

The ConfigurationServiceMenu exposes the allConfigurationProperties action in the user interface.

6.3. DomainObjectContainer
The DomainObjectContainer service provides a set of general purpose functionality for domain
objects to call. Principal amongst these are a generic APIs for querying objects and creating and

76

rgant.pdf#_rgant-PostConstruct
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

persisting objects. In addition, the service provides access to security context (the "current user"),
allows information and warning messages to be raised, and various other miscellaneous functions.

(Almost all of) the methods in this service have been moved out into a number of
more fine-grained services: RepositoryService, MessageService, FactoryService,
TitleService, ConfigurationService, UserService and ServiceRegistry.

6.3.1. APIs

The sections below discuss the functions provided by the service, broken out into categories.

Object Creation API

The object creation APIs are used to instantiate new domain objects or view models.

public interface DomainObjectContainer {

 <T> T newTransientInstance(final Class<T> ofType); ①
 <T> T newViewModelInstance(final Class<T> ofType, final String memento); ②
 <T> T mixin(); ③
 ...
}

① create a new non-persisted domain entity. Any services will be automatically injected into the
service.

② create a new view model, with the specified memento (as per
ViewModel#viewModelMemento(). In general it is easier to just annotate with @ViewModel and
let Apache Isis manage the memento automatically.

③ programmatically instantiate a mixin, as annotated with @Mixin or @DomainObject#nature().

For example:

Customer cust = container.newTransientInstance(Customer.class);
cust.setFirstName("Freddie");
cust.setLastName("Mercury");
container.persist(cust);

As an alternative to using newTransientInstance(…) or mixin(…), you could also simply new() up the
object. Doing this will not inject any domain services, but they can be injected manually using
#injectServicesInto(…)`.

77

rgcms.pdf#_rgcms_classes_super_AbstractViewModel
rgant.pdf#_rgant-ViewModel
rgant.pdf#_rgant-Mixin
rgant.pdf#_rgant-DomainObject_nature
rg .pdf#_rgsvc_api_DomainObjectContainer_services-api

Calling new(…) also this circumvents Apache Isis' created() callback, and in
addition any default values for properties (either explicitly set by default…() or
defaulted implicitly according to Apache Isis' own conventions) will not be called
either. If you don’t intend to use these features, though, the net effect is code that
has less coupling to Isis and is arguably easier to understand (has "less magic"
happening).

Generic Repository API

The repository API acts as an abstraction over the JDO/DataNucleus objectstore. You can use it
during prototyping to write naive queries (find all rows, then filter using the Guava Predicate API,
or you can use it to call JDO named queries using JDOQL.

As an alternative, you could also use JDO typesafe queries through the IsisJdoSupport service.

public interface DomainObjectContainer {
 public <T> List<T> allInstances(Class<T> ofType, long... range);
①
 <T> List<T> allMatches(Query<T> query);
②
 <T> List<T> allMatches(Class<T> ofType, Predicate<? super T> predicate, long...
range); ③
 <T> List<T> allMatches(Class<T> ofType, String title, long... range);
④
 <T> List<T> allMatches(Class<T> ofType, T pattern, long... range);
⑤
 ...
}

① all persisted instances of specified type. Mostly for prototyping, though can be useful to obtain
all instances of domain entities if the number is known to be small. The optional varargs
parameters are for paging control; more on this below.

② all persistence instances matching the specified Query. Query itself is an Isis abstraction on top
of JDO/DataNucleus' Query API. This is the primary API used for querying

③ all persistenced instances of specified type matching Predicate. Only really intended for
prototyping because in effect constitutes a client-side WHERE clause

④ all persisted instances with the specified string as their title. Only very occasionally used

⑤ all persisted instances matching object (query-by-example). Only very occasionally used

There are various implementations of the Query API, but these either duplicate functionality of the
other overloads of allMatches(…) or they are not supported by the JDO/DataNucleus object store.
The only significant implementation of Query to be aware of is QueryDefault, which identifies a
named query and a set of parameter/argument tuples.

For example, in the (non-ASF) Isis addons' todoapp the ToDoItem is annotated:

78

rgcms.pdf#_rgcms_methods_reserved_created
rgcms.pdf#_rgcms_methods_prefixes_default
rgcms.pdf#_rgcms_methods_prefixes_default
rgcms.pdf#_rgcms_methods_prefixes_default
http://www.datanucleus.org/products/accessplatform_4_0/jdo/query.html#named
http://www.datanucleus.org/products/accessplatform_4_0/jdo/jdoql_typesafe.html
http://github.com/isisaddons/isis-app-todoapp

@javax.jdo.annotations.Queries({
 @javax.jdo.annotations.Query(
 name = "findByAtPathAndComplete", language = "JDOQL", ①
 value = "SELECT "
 + "FROM todoapp.dom.module.todoitem.ToDoItem "
 + "WHERE atPath.indexOf(:atPath) == 0 " ②
 + " && complete == :complete"), ③
 ...
})
public class ToDoItem ... {
 ...
}

① name of the query

② defines the atPath parameter

③ defines the complete parameter

This JDO query definitions are used in the ToDoItemRepositoryImplUsingJdoql service:

@DomainService(nature = NatureOfService.DOMAIN)
public class ToDoItemRepositoryImplUsingJdoql implements ToDoItemRepositoryImpl {
 @Programmatic
 public List<ToDoItem> findByAtPathAndCategory(final String atPath, final Category
category) {
 return container.allMatches(
 new QueryDefault<>(ToDoItem.class,
 "findByAtPathAndCategory", ①
 "atPath", atPath, ②
 "category", category)); ③
 }
 ...
 @javax.inject.Inject
 DomainObjectContainer container;
}

① corresponds to the "findByAtPathAndCategory" JDO named query

② provide argument for the atPath parameter. The pattern is parameter, argument, parameter,
argument, … and so on.

③ provide argument for the category parameter. The pattern is parameter, argument, parameter,
argument, … and so on.

Other JDOQL named queries (not shown) follow the exact same pattern.

With respect to the other query APIs, the varargs parameters are optional, but allow for (client-side
and managed) paging. The first parameter is the start (0-based, the second is the count.

79

It is also possible to query using DataNucleus' type-safe query API. For more
details, see IsisJdoSupport.

Object Persistence API

The persistence API is used to persist newly created objects (as per #newTransientInstance(…),
above and to delete (remove) objects that are persistent.

Note that there is no API for updating existing objects; the framework (or rather, JDO/DataNucleus)
performs object dirty tracking and so any objects that are modified in the course of a request will
be automatically updated).

public interface DomainObjectContainer {

 boolean isPersistent(Object domainObject); ①
 boolean isViewModel(Object domainObject); ②

 void persist(Object domainObject); ③
 void persistIfNotAlready(Object domainObject); ④

 void remove(Object persistentDomainObject); ⑤
 void removeIfNotAlready(Object domainObject); ⑥

 boolean flush(); ⑦
 ...
}

① test whether a particular domain object is persistent or not.

② test whether a particular domain object is a view model or not. Note that this includes any
domain objects annotated with @DomainObject#nature=Nature.EXTERNAL_ENTITY) or
@DomainObject#nature=Nature.INMEMORY_ENTITY

③ persist a transient object. Note though that this will throw an exception if the object is already
persistent; this can happen if JDO/DataNucleus’s persistence-by-reachability is in effect. For this
reason it is generally better to use persistIfNotAlready(…). Also note that persist(…) has been
deprecate. When moving to RepositoryService#persist() take into account that its behavior is
identical to <4>, being a no-op if the object is persistent, instead of throwing an exception.

④ persist an object but only if know to not have been persistent. But if the object is persistent, is a
no-op

⑤ remove (ie DELETE) a persistent object. For similar reasons to the persistence, it is generally
better to use:

⑥ remove (ie DELETE) an object only if known to be persistent. But if the object has already been
deleted, then is a no-op.

⑦ flushes all pending changes to the objectstore. Explained further below.

For example:

80

rgant.pdf#_rgant-DomainObject_nature
rgant.pdf#_rgant-DomainObject_nature
http://www.datanucleus.org/products/accessplatform_4_0/jdo/orm/cascading.html
rgsvc_api_RepositoryService.pdf#_rgsvc_api_RepositoryService

Customer cust = container.newTransientInstance(Customer.class);
cust.setFirstName("Freddie");
cust.setLastName("Mercury");
container.persistIfNotAlready(cust);

You should be aware that by default Apache Isis queues up calls to #persist() and #remove(). These
are then executed either when the request completes (and the transaction commits), or if the queue
is flushed. This can be done either implicitly by the framework, or as the result of a direct call to
#flush().

By default the framework itself will cause #flush() to be called whenever a query is executed by
way of #allMatches(Query), as documented above. However, this behaviour can be disabled using
the configuration property isis.services.container.disableAutoFlush.

Messages API

The DomainObjectContainer allows domain objects to raise information, warning or error messages.
These messages can either be simple strings, or can be translated.

public interface DomainObjectContainer {

 void informUser(String message);
①
 String informUser(TranslatableString message, Class<?> contextClass, String
contextMethod); ②

 void warnUser(String message);
③
 String warnUser(TranslatableString message, Class<?> contextClass, String
contextMethod); ④

 void raiseError(String message);
⑤
 String raiseError(TranslatableString message, Class<?> contextClass, String
contextMethod); ⑥
 ...
}

① display as a transient message to the user (not requiring acknowledgement). In the Wicket
viewer this is implemented as a toast that automatically disappears after a period of time.

② ditto, but with translatable string, for i18n support.

③ warn the user about a situation with the specified message. In the Wicket viewer this is
implemented as a toast that must be closed by the end-user.

④ ditto, but with translatable string, for i18n support.

⑤ show the user an unexpected application error. In the Wicket viewer this is implemented as a
toast (with a different colour) that must be closed by the end-user.

81

rgcfg.pdf#_rgcfg_configuring-core
ugvw.pdf
ugvw.pdf
ugbtb.pdf#_ugbtb_i18n
ugvw.pdf
ugvw.pdf

⑥ ditto, but with translatable string, for i18n support.

For example:

public Order addItem(Product product, @ParameterLayout(named="Quantity") int quantity)
{
 if(productRepository.stockLevel(product) == 0) {
 container.warnUser(
 product.getDescription() + " out of stock; order fulfillment may be
delayed");
 }
 ...
}

Security API

The security API allows the domain object to obtain the identity of the user interacting with said
object.

public interface DomainObjectContainer {
 UserMemento getUser();
 ...
}

where in turn (the essence of) UserMemento is:

public final class UserMemento {
 public String getName() { ... }
 public boolean isCurrentUser(final String userName) { ... }

 public List<RoleMemento> getRoles() { ... }
 public boolean hasRole(final RoleMemento role) { ... }
 public boolean hasRole(final String roleName) { ... }
 ...
}

and RoleMemento is simpler still:

public final class RoleMemento {
 public String getName() { ... }
 public String getDescription() { ... }
 ...
}

The roles associated with the UserMemento will be based on the configured security (typically Shiro).

82

ugsec.pdf

In addition, when using the Wicket viewer there will be an additional
"org.apache.isis.viewer.wicket.roles.USER" role; this is used internally to restrict access to web
pages without authenticating.

Presentation API

A responsibility of every domain object is to return a title. This can be done declaratively using the
@Title annotation on property/ies, or it can be done imperatively by writing a title() method.

It’s quite common for titles to be built up of the titles of other objects. If using building up the title
using @Title then Apache Isis will automatically use the title of the objects referenced by the
annotated properties. We also need programmatic access to these titles if going the imperative
route.

Similarly, it often makes sense if raising messages to use the title of an object in a message rather
(than a some other property of the object), because this is how end-users will be used to identifying
the object.

The API defined by DomainObjectContainer is simply:

public interface DomainObjectContainer {
 String titleOf(Object domainObject); ①
 String iconNameOf(Object domainObject); ②
 ...
}

① return the title of the object, as rendered in the UI by the Apache Isis viewers.

② return the icon name of the object, as rendered in the UI by the Apache Isis viewers.

By way of example, here’s some code from the (non-ASF) Isis addons' todoapp showing the use of
the API in an message:

 public List<ToDoItem> delete() {
 final String title = container.titleOf(this); ①
 ...
 container.removeIfNotAlready(this);
 container.informUser(
 TranslatableString.tr(
 "Deleted {title}", "title", title), ②
 this.getClass(), "delete");
 ...
 }

① the title is obtained first, because we’re not allowed to reference object after it’s been deleted

② use the title in an i18n TranslatableString

83

ugvw.pdf
rgant.pdf#_rgant-Title
rgcms.pdf#_rgcms_methods_reserved_title
http://github.com/isisaddons/isis-app-todoapp

Properties API

The properties API allows domain objects to read the configuration properties aggregated from the
various configuration files.

public interface DomainObjectContainer {
 String getProperty(String name); ①
 String getProperty(String name, String defaultValue); ②
 List<String> getPropertyNames(); ③
}

① Return the configuration property with the specified name; else return null.

② Return the configuration property with the specified name; if it doesn’t exist then return the
specified default value.

③ Return the names of all the available properties.

For example, here’s a fictitious service that might wrap Twitter4J. say:

@DomainService(nature=NatureOfService.DOMAIN)
public class TweetService {
 @Programmatic
 @PostConstruct
 public void init() {
 this.oauthConsumerKey = container.getProperty(
"tweetservice.oauth.consumerKey");
 this.oauthConsumerSecret = container.getProperty
("tweetservice.oauth.consumerSecret");
 this.oauthAccessToken = container.getProperty(
"tweetservice.oauth.accessToken");
 this.oauthAccessTokenSecret = container.getProperty
("tweetservice.oauth.accessTokenSecret");
 }
 ...
 @Inject
 DomainObjectContainer container;
}

If you do have a domain service that needs to access properties, then note that an
alternative is to define a @PostConstruct method and pass in a Map<String,String>
of properties. The two techniques are almost identical; it’s mostly a matter of
taste.

Services API

The services API allows your domain objects to programmatically inject services into arbitrary
objects, as well as to look up services by type.

The methods are:

84

rgcfg.pdf#_rgcfg_configuration-files
http://twitter4j.org/en/configuration.html
rgant.pdf#_rgant-PostConstruct

public interface DomainObjectContainer {
 <T> T injectServicesInto(final T domainObject); ①
 <T> T lookupService(Class<T> service); ②
 <T> Iterable<T> lookupServices(Class<T> service); ③
 ...
}

① injects services into domain object; used extensively internally by the framework (eg to inject to
other services, or to entities, or integration test instances, or fixture scripts). Service injection is
done automatically if objects are created using #newTransientInstance(), described above

② returns the first registered service that implements the specified class

③ returns an Iterable in order to iterate over all registered services that implement the specified
class

The primary use case is to instantiate domain objects using a regular constructor ("new is the new
new") rather than using the #newTransientInstance() API, and then using the #injectServicesInto(…
) API to set up any dependencies.

For example:

Customer cust = container.injectServicesInto(new Customer());
cust.setFirstName("Freddie");
cust.setLastName("Mercury");
container.persist(cust);

Validation API

The intent of this API is to provide a mechanism where an object can programmatically check the
state any class invariants. Specifically, this means the validating the current state of all properties,
as well as any object-level validation defined by validate().

These methods have been deprecated; this feature should be considered
experimental and your mileage may vary.

The API provided is:

public interface DomainObjectContainer {
 boolean isValid(Object domainObject);
 String validate(Object domainObject);
 ...
}

6.3.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.metamodel.services.container.DomainObjectContainerDefault).

85

rgcms.pdf#_rgcms_methods_reserved_validate

6.3.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of
DomainObjectContainer service is automatically registered and injected (it is annotated with
@DomainService) so no further configuration is required.

6.4. EventBusService
The EventBusService allows domain objects to emit events to subscribing domain services using an
in-memory event bus.

The primary user of the service is the framework itself, which automatically emit events for
actions, properties and collections. Multiple events are generated:

• when an object member is to be viewed, an event is fired; subscribers can veto (meaning that
the member is hidden)

• when an object member is to be enabled, the same event instance is fired; subscribers can veto
(meaning that the member is disabled, ie cannot be edited/invoked)

• when an object member is being validated, then a new event instance is fired; subscribers can
veto (meaning that the candidate values/action arguments are rejected)

• when an object member is about to be changed, then the same event instance is fired;
subscribers can perform pre-execution operations

• when an object member has been changed, then the same event instance is fired; subscribers
can perform post-execution operations

If a subscriber throws an exception in the first three steps, then the interaction is vetoed. If a
subscriber throws an exception in the last two steps, then the transaction is aborted. For more on
this topic, see @Action#domainEvent(), @Property#domainEvent() and @Collection#domainEvent().

It is also possible for domain objects to programmatically generate domain events. However the
events are published, the primary use case is to decoupling interactions from one
module/package/namespace and another.

Two implementations are available, using either Guava's EventBus, or alternatively using the
AxonFramework's SimpleEventBus. It is also possible to plug in a custom implementation.

6.4.1. API & Implementation

The API defined by EventBusService is:

86

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgant.pdf#_rgant-Collection_domainEvent
rgant.pdf#_rgant-Action_domainEvent
rgant.pdf#_rgant-Property_domainEvent
rgant.pdf#_rgant-Collection_domainEvent
https://code.google.com/p/guava-libraries/
https://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://www.axonframework.org/
http://www.axonframework.org/docs/2.4/single.html#d5e1489

public abstract class EventBusService {
 @Programmatic
 public void post(Object event) { ... } ①
 @Programmatic
 public void register(final Object domainService) { ... } ②
 @Programmatic
 public void unregister(final Object domainService) { ... } ③
}

① posts the event onto event bus

② allows domain services to register themselves. This should be done in their @PostConstruct
initialization method (for both singleton and @RequestScoped domain services.

③ exists for symmetry, but need never be called (it is in fact deliberately a no-op).

Isis provides a default implementation of the service,
o.a.i.objectstore.jdo.datanucleus.service.eventbus.EventBusServiceJdo.

6.4.2. Registering Subscribers

The register() method should be called in the @PostConstruct lifecycle method. It is valid and
probably the least confusing to readers to also "unregister" in the @PreDestroy lifecycle method
(though as noted above, unregistering is actually a no-op).

For example:

@DomainService(nature=NatureOfService.DOMAIN) ①
@DomainServiceLayout(menuOrder="1") ②
public class MySubscribingDomainService {
 @PostConstruct
 public void postConstruct() {
 eventBusService.register(this); ③
 }
 @PreDestroy
 public void preDestroy() {
 eventBusService.unregister(this); ④
 }
 ...
 @javax.inject.Inject
 EventBusService eventBusService;
}

① subscribers are typically not visible in the UI, so specify a DOMAIN nature

② It’s important that subscribers register before any domain services that might emit events on
the event bus service. For example, the (non-ASF) Isis addons' security module provides a
domain service that automatically seeds certain domain entities; these will generate lifecycle
events and so any subscribers must be registered before such seed services. The easiest way to
do this is to use the @DomainServiceLayout#menuOrder() attribute.

87

rgant.pdf#_rgant-PostConstruct
rgant.pdf#_rgant-RequestScoped
rgant.pdf#_rgant-PostConstruct
rgant.pdf#_rgant-PreDestroy
http://github.com/isisaddons/isis-module-security
rgcms.pdf#_rgcms_classes_lifecycleevent
rgcms.pdf#_rgcms_classes_lifecycleevent
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

③ register with the event bus service during @PostConstruct initialization

④ corresponding deregister when shutting down

This works for both singleton (application-scoped) and also @RequestScoped domain services.

The AbstractSubscriber class automatically performs this registration. As a
convenience, it is also annotated with the @DomainServiceLayout#menuOrder()

attribute.

6.4.3. Annotating Members

As discussed in the introduction, the framework will automatically emit domain events for all of
the object members (actions, properties or collections) of an object whenever that object is
rendered or (more generally) interacted with.

For example:

public class Customer {
 @Action
 public Customer placeOrder(Product product, @ParameterLayout(named="Quantity") int
qty) { ... }
 ...
}

will propagate an instance of the default o.a.i.applib.services.eventbus.ActionDomainEvent.Default
class. If using the Guava event bus this can be subscribed to using:

@DomainService(nature=NatureOfService.DOMAIN)
public class MySubscribingDomainService
 @Programmatic
 @com.google.common.eventbus.Subscribe
 public void on(ActionDomainEvent ev) { ... }
 ...
}

or if using Axonframework, the subscriber uses a different annotation:

@DomainService(nature=NatureOfService.DOMAIN)
public class MySubscribingDomainService
 @Programmatic
 @org.axonframework.eventhandling.annotation.EventHandler
 public void on(ActionDomainEvent ev) { ... }
 ...
}

More commonly though you will probably want to emit domain events of a specific subtype. As a

88

rgant.pdf#_rgant-PostConstruct
rgant.pdf#_rgant-RequestScoped
rgcms.pdf#_rgcms_classes_super_AbstractSubscriber
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

slightly more interesting example, suppose in a library domain that a LibraryMember wants to leave
the library. A letter should be sent out detailing any books that they still have out on loan:

In the LibraryMember class, we publish the event by way of an annotation:

public class LibraryMember {
 @Action(domainEvent=LibraryMemberLeaveEvent.class) ①
 public void leave() { ... }
 ...
}

① LibraryMemberLeaveEvent is a subclass of o.a.i.applib.eventbus.ActionDomainEvent. The topic of
subclassing is discussed in more detail below.

Meanwhile, in the BookRepository domain service, we subscribe to the event and act upon it. For
example:

public class BookRepository {
 @Programmatic
 @com.google.common.eventbus.Subscribe
 public void onLibraryMemberLeaving(LibraryMemberLeaveEvent e) {
 LibraryMember lm = e.getLibraryMember();
 List<Book> lentBooks = findBooksOnLoanFor(lm);
 if(!lentBooks.isEmpty()) {
 sendLetter(lm, lentBooks);
 }
 }
 ...
}

This design allows the libraryMember module to be decoupled from the book module.

6.4.4. Event hierarchy

By creating domain event subtypes we can be more semantically precise and in turn providesmore
flexibility for subscribers: they can choose whether to be broadly applicable (by subscribing to a
superclass) or to be tightly focussed (by subscribing to a subclass).

We recommend that you define event classes at (up to) four scopes:

• at the top "global" scope is the Apache Isis-defined o.a.i.applib.event.ActionDomainEvent

• for the "module" scope, create a static class to represent the module itself, and creating nested
classes within

• for each "class" scope, create a nested static event class in the domain object’s class for all of the
domain object’s actions

• for each "action" scope, create a nested static event class for that action, inheriting from the
"domain object" class.

89

To put all that into code; at the module level we can define:

package com.mycompany.modules.libmem;
...
public static class LibMemModule {
 private LibMemModule() {}
 public abstract static class ActionDomainEvent<S>
 extends org.apache.isis.applib.event.ActionDomainEvent<S> {}
 ... ①
 public abstract static class PropertyDomainEvent<S,T>
 extends org.apache.isis.applib.event.PropertyDomainEvent<S,T> {}
 public abstract static class CollectionDomainEvent<S,E>
 extends org.apache.isis.applib.event.CollectionDomainEvent<S,E> {}
}

① similar events for properties and collections should also be defined

For the class-level we can define:

public static class LibraryMember {
 public abstract static class ActionDomainEvent
 extends LibMemModule.ActionDomainEvent<LibraryMember> { }
 ... ①
}

① similar events for properties and collections should also be defined

and finally at the action level we can define:

public class LibraryMember {
 public static class LeaveEvent extends LibraryMember.ActionDomainEvent { }
 @Action(domainEvent=LeaveEvent.class)
 public void leave() { ... }
 ...
}

The subscriber can subscribe either to the general superclass (as before), or to any of the classes in
the hierarchy.

Variation (for contributing services)

A slight variation on this is to not fix the generic parameter at the class level, ie:

90

public static class LibraryMember {
 public abstract static class ActionDomainEvent<S>
 extends LibMemModule.ActionDomainEvent<S> { }
 ...
}

and instead parameterize down at the action level:

public class LibraryMember {
 public static class LeaveEvent
 extends LibraryMember.ActionDomainEvent<LibraryMember> { } ①
 }
 @Action(domainEvent=LeaveEvent.class)
 public void leave() { ... }
 ...
}

This then allows for other classes - in particular domain services contributing members - to also
inherit from the class-level domain events.

6.4.5. Programmatic posting

To programmatically post an event, simply call #post().

The LibraryMember example described above could for example be rewritten into:

public class LibraryMember {
 ...
 public void leave() {
 ...
 eventBusService.post(new LibraryMember.LeaveEvent(...)); ①
 }
 ...
}

① LibraryMember.LeaveEvent could be any class, not just a subclass of
o.a.i.applib.event.ActionDomainEvent.

In practice we suspect there will be few cases where the programmatic approach is required rather
than the declarative approach afforded by @Action#domainEvent() et al.

6.4.6. Using WrapperFactory

An alternative way to cause events to be posted is through the WrapperFactory. This is useful when
you wish to enforce a (lack-of-) trust boundary between the caller and the callee.

For example, suppose that Customer#placeOrder(…) emits a PlaceOrderEvent, which is subscribed to

91

rgant.pdf#_rgant-Action_domainEvent

by a ReserveStockSubscriber. This subscriber in turn calls StockManagementService#reserveStock(…).
Any business rules on #reserveStock(…) should be enforced.

In the ReserveStockSubscriber, we therefore use the WrapperFactory:

@DomainService(nature=NatureOfService.DOMAIN)
public class ReserveStockSubscriber {
 @Programmatic
 @Subscribe
 public void on(Customer.PlaceOrderEvent ev) {
 wrapperFactory.wrap(stockManagementService)
 .reserveStock(ev.getProduct(), ev.getQuantity());
 }
 ...
 @Inject
 StockManagementService stockManagementService;
 @Inject
 WrapperFactory wrapperFactory;
}

6.4.7. Implementation SPI

The implementation of EventBusService provided by Apache Isis will by default use Guava's
EventBus as the underlying in-memory event bus. Alternatively the AxonFramework's
SimpleEventBus can be used. Which is used is specified through configuration property (described
below).

Guava vs Axon, which to use?

Guava actually queues up events; they are not guaranteed to be dispatched
immediately. This generally is not problem, but can be for cases where the
subscriber may in turn want to post its own events (using WrapperFactory).

The Axon SimpleEventBus-based implementation on the other hand is fully
synchronous; events are dispatched as soon as they are posted. This works well
in all scenarios (that we have tested).

It is also possible to use some other implementation.

public interface EventBusImplementation {
 void register(Object domainService);
 void unregister(Object domainService);
 void post(Object event);
}

As is probably obvious, the EventBusService just delegates down to these method calls when its own
similarly named methods are called.

92

https://code.google.com/p/guava-libraries/
https://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://www.axonframework.org/
http://www.axonframework.org/docs/2.4/single.html#d5e1489

If you do provide your own implementation of this SPI, be aware that your subscribers will need to
use whatever convention is required (eg different annotations) such that the events are correctly
routed through to your subscribers.

6.4.8. Configuration

The implementation of EventBusService provided by Apache Isis will by default use Guava's
EventBus as the underlying in-memory event bus. Alternatively the AxonFramework's
SimpleEventBus can be used.

To specify which, add the configuration property isis.services.eventbus.implementation:

isis.services.eventbus.implementation=guava

or

isis.services.eventbus.implementation=axon

If you have written your own implementation of the EventBusServiceImplementation SPI, then
specify instead its fully-qualified class name:

isis.services.eventbus.implementation=com.mycompany.isis.MyEventBusServiceImplementati
on

In addition, there is one further configuration property, whether to allow "late registration":

isis.services.eventbus.allowLateRegistration=false

Late registration refers to the idea that a domain service can register itself with the EventBusService
after events have been posted. Since domain services are set up at boot time, this almost certainly
constitutes a bug in the code and so by default late registration is not allowed. Setting the above
property to true disables this check.

6.4.9. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of EventBusService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

93

https://code.google.com/p/guava-libraries/
https://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://www.axonframework.org/
http://www.axonframework.org/docs/2.4/single.html#d5e1489
rgcfg.pdf#_rgcfg_configuring-core
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

6.4.10. Related Services

The EventBusService is intended for fine-grained publish/subscribe for object-to-object interactions
within an Apache Isis domain object model. The event propagation is strictly in-memory, and there
are no restrictions on the object acting as the event (it need not be serializable, for example).

The PublishingService meanwhile is intended for coarse-grained publish/subscribe for system-to-
system interactions, from Apache Isis to some other system. Here the only events published are
those that action invocations (for actions annotated with @Action#publishing()) and of changed
objects (for objects annotated with @DomainObject#publishing()).

6.5. FactoryService
The FactoryService collects together methods for instantiating domain objects.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

6.5.1. API

The API of FactoryService is:

public interface FactoryService {
 <T> T instantiate(final Class<T> ofType); ①
 <T> T mixin(); ②
}

① create a new non-persisted domain entity. Any services will be automatically injected into the
service.

② programmatically instantiate a mixin, as annotated with @Mixin or @DomainObject#nature().

The object is created in memory, but is not persisted. The benefits of using this method (instead of
simply using the Java new keyword) are:

• any services will be injected into the object immediately (otherwise they will not be injected
until the frameworkbecomes aware of the object, typically when it is persisted through the
RepositoryService

• the default value for any properties (usually as specified by defaultXxx() supporting methods)
will not be set and the created() callback will be called.

The corollary is: if your code never uses defaultXxx() or the created() callback, then you can just
new up the object. The ServiceRegistry service can be used to inject services into the domain object.

6.5.2. Usage

For example:

94

rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-DomainObject_publishing
rgant.pdf#_rgant-Mixin
rgant.pdf#_rgant-DomainObject_nature

Customer cust = factoryService.instantiate(Customer.class);
cust.setFirstName("Freddie");
cust.setLastName("Mercury");
repositoryService.persist(cust);

6.5.3. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.metamodel.services.factory.FactoryServiceDefault).

6.5.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of FactoryService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

6.5.5. Related Services

The RepositoryService is often used in conjunction with the FactoryService, to persist domain
objects after they have been instantiated and populated.

An alternative to using the factory service is to simply instantiate the object ("new is the new new")
and then use the ServiceRegistry service to inject other domain services into the instantiated
object.

6.6. Scratchpad
The Scratchpad service is a request-scoped service to allow objects to exchange information even if
they do not directly call each other.

6.6.1. API & Implementation

The API of Scratchpad service is:

@RequestScoped
public class Scratchpad {
 @Programmatic
 public Object get(Object key) { ... }
 @Programmatic
 public void put(Object key, Object value) { ... }
 @Programmatic
 public void clear() { ... }
}

95

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
../../more-advanced-topics/how-to-09-020-How-to-write-a-typical-domain-service.html

This class (o.a.i.applib.services.scratchpad.Scratchpad) is also the implementation. And, as you
can see, the service is just a request-scoped wrapper around a java.util.Map.

6.6.2. Usage

The most common use-case is for bulk actions that act upon multiple objects in a list. The (same)
Scratchpad service is injected into each of these objects, and so they can use pass information.

For example, the Isis addons example todoapp (not ASF) demonstrates how the Scratchpad service
can be used to calculate the total cost of the selected `ToDoItem`s:

@Action(
 semantics=SemanticsOf.SAFE,
 invokeOn=InvokeOn.COLLECTION_ONLY
)
public BigDecimal totalCost() {
 BigDecimal total = (BigDecimal) scratchpad.get("runningTotal");
 if(getCost() != null) {
 total = total != null ? total.add(getCost()) : getCost();
 scratchpad.put("runningTotal", total);
 }
 return total.setScale(2);
}
@Inject
Scratchpad scratchpad;

A more complex example could use a view model to enable bulk updates to a set of objects. The
view model’s job is to gather track of the items to be updated:

public class ToDoItemUpdateBulkUpdate extends AbstractViewModel {
 private List<ToDoItem> _items = ...;
 public ToDoItemBulkUpdate add(ToDoItem item) {
 _items.add(item);
 return this;
 }
 ... ①
}

① not shown - the implementation of ViewModel for converting the list of _items into a string.

The bulk action in the objects simply adds the selected item to the view model:

96

rgant.pdf#_rgant-Action_invokeOn
https://github.com/isisaddons/isis-app-todoapp/
ugbtb.pdf#_ugbtb_view-models

@Action(
 invokeOn=InvokeOn.COLLECTIONS_ONLY
 semantics=SemanticsOf.SAFE
)
public ToDoItemBulkUpdate bulkUpdate() {
 return lookupBulkUpdateViewModel().add(this);
}
private ToDoItemBulkUpdate lookupBulkUpdateViewModel() {
 ToDoItemBulkUpdate bulkUpdate =
 (ToDoItemBulkUpdate) scratchpad.get("bulkUpdateViewModel"); ①
 if(bulkUpdate == null) {
 bulkUpdate = container.injectServicesInto(new ToDoItemBulkUpdate());
 scratchpad.put("bulkUpdateViewModel", bulkUpdate); ②
 }
 return bulkUpdate;
}
@Inject
Scratchpad scratchpad;

① look for the ToDoItemBulkUpdate in the scratchpad…

② … and add one if there isn’t one (ie for the first object returned).

If using the Wicket viewer, the ToDoItemBulkUpdate view model returned from the last action
invoked will be displayed. Thereafter this view model can be used to perform a bulk update of the
"enlisted" items.

6.6.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of Scratchpad service is
automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

6.6.4. Related Services

The ActionInteractionContext service allows bulk actions to co-ordinate with each other.

The QueryResultsCache is useful for caching the results of expensive method calls.

6.7. UserService
The UserService allows the domain object to obtain the identity of the user interacting with said
object.

If SudoService has been used to temporarily override the user and/or roles, then this service will
report the overridden values instead.

97

ugvw.pdf
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgant.pdf#_rgant-Action_invokeOn

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

6.7.1. API and Usage

The API of UserService is:

public interface UserService {
 UserMemento getUser();
}

where in turn (the essence of) UserMemento is:

public final class UserMemento {
 public String getName() { ... }
 public boolean isCurrentUser(final String userName) { ... }

 public List<RoleMemento> getRoles() { ... }
 public boolean hasRole(final RoleMemento role) { ... }
 public boolean hasRole(final String roleName) { ... }
 ...
}

and RoleMemento is simpler still:

public final class RoleMemento {
 public String getName() { ... }
 public String getDescription() { ... }
 ...
}

The roles associated with the UserMemento will be based on the configured security (typically Shiro).

In addition, when using the Wicket viewer there will be an additional
"org.apache.isis.viewer.wicket.roles.USER" role; this is used internally to restrict access to web
pages without authenticating.

6.7.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.runtime.services.user.UserServiceDefault).

6.7.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of UserService service

98

ugsec.pdf
ugvw.pdf
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping

is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

99

rgant.pdf#_rgant-DomainServiceLayout_menuOrder

Chapter 7. Integration API
The integration APIs provide functionality to the domain objects to integrate with other bounded
contexts, for example sending an email or serializing an object out to XML.

The table below summarizes the integration APIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 6. Integration API

API Description Implemen
tation

Notes

o.a.i.applib.
services.bookmark
BookmarkService2

Convert object reference to a serializable
"bookmark", and vice versa.

BookmarkSe
rviceDefau
lt
o.a.i.core
isis-core-
metamodel

related
services:
BookmarkHo
lder-
ActionCont
ributions,
BookmarkHo
lder-
Associatio
n-
Contributi
ons

o.a.i.applib
services.deeplink
DeepLinkService

Obtain a URL to a domain object (eg for use
within an email or report)

DeepLinkSe
rviceWicke
t
o.a.i.view
er
isis-
viewer-
wicket-
impl

Implement
ation only
usable
within
Wicket
viewer

o.a.i.applib.
services.email
EmailService

Send a HTML email, optionally with
attachments.

EmailServi
ceDefault
o.a.i.core
isis-core-
runtime

o.a.i.applib.
services.guice
GuiceBeanProvider

Access to internal framework services initialized
using Guice DI.

GuiceBeanP
roviderWic
ket
o.a.i.core
isis-
viewer-
wicket-
impl

o.a.i.applib.
services.jaxb
JaxbService

Marshal and unmarshal JAXB-annotated view
models to/from XML.

JaxbServic
eDefault
o.a.i.core
isis-core-
schema

100

http://www.isisaddons.org

API Description Implemen
tation

Notes

o.a.i.applib.
services.memento
MementoService

Capture a serializable memento of a set of
primitives or bookmarks. Primarily used
internally, eg in support of commands/auditing.

MementoSer
viceDefaul
t
o.a.i.core
isis-core-
runtime

o.a.i.applib.
services.xmlsnapshot
XmlSnapshotService

Generate an XML representation of an object
and optionally a graph of related objects.

XmlSnapsho
tServiceDe
fault
o.a.i.core
isis-core-
runtime

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

7.1. BookmarkService2
The BookmarkService2 API provides the ability to obtain a serializable
o.a.i.applib.bookmarks.Bookmark for any (persisted) domain object, and to lookup domain objects
given a Bookmark. This can then in turn be converted to and from a string.

For example, a Customer object with:

• an object type of "custmgmt.Customer" (as per DomainObject#objectType() or equivalent) , and

• an id=123

could correspond to a Bookmark with a string representation of custmgmt.Customer|123.

A Bookmark is little more than an API equivalent of Apache Isis' internal Oid (object
identifier). Nevertheless, the ability to uniquely address any domain object
within an Apache Isis system — to in effect provide a URN — is immensely useful.

For example, a Bookmark could be converted into a barcode, and then this used for
automated scanning of correspondence from a customer.

Bookmarks are used by several other domain services as a means of storing areference to an
arbitrary object (a polymorphic relationship). For example, the (non-ASF) Isis addons' auditing
module’s implementation of AuditerService uses bookmarks to capture the object that is being
audited.

101

rgant.pdf#_rgant-DomainObject_objectType
http://github.com/isisaddons/isis-module-auditing

One downside of using Bookmarks is that there is no way for the JDO/DataNucleus
objectstore to enforce any kind of referental integrity. However, the (non-ASF)
Isis addons' poly module describes and supports a design pattern to address this
requirement.

7.1.1. API & Implementation

The API defined by BookmarkService2 is:

public interface BookmarkService2 {
 enum FieldResetPolicy { ①
 RESET,
 DONT_RESET
 }
 Object lookup(BookmarkHolder bookmarkHolder, FieldResetPolicy policy);
 Object lookup(Bookmark bookmark, FieldResetPolicy policy);
 <T> T lookup(Bookmark bookmark, FieldResetPolicy policy, Class<T> cls); ②
 Bookmark bookmarkFor(Object domainObject);
 Bookmark bookmarkFor(Class<?> cls, String identifier);
}

① if the object has already been loaded from the database, then whether to reset its fields. The
default it to RESET.

② same as lookup(Bookmark bookmark), but downcasts to the specified type.

The core framework provides a default implementation of this API, namely
o.a.i.core.metamodel.services.bookmarks.BookmarkServiceInternalDefault

7.1.2. BookmarkHolder

The BookmarkHolder interface is intended to be implemented by domain objects that use a Bookmark
to reference a (single) domain object; an example might be a class such as the audit entry,
mentioned above. The interface is simply:

public interface BookmarkHolder {
 @Programmatic
 Bookmark bookmark();
}

There are two services that will contribute to this interface:

• BookmarkHolderActionContributions will provide a lookup(…) action

• BookmarkHolderAssociationContributions provides an object property.

Either of these can be suppressed, if required, using a vetoing subscriber. For example, to suppress
the object property (so that only the lookup(…) action is ever shown for implementations of
BookmarkHolder, define:

102

http://github.com/isisaddons/isis-module-poly

@DomainService(nature=NatureOfService.DOMAIN)
public class AlwaysHideBookmarkHolderAssociationsObjectProperty {
 @Subscribe
 public void on(BookmarkHolderAssociationContributions.ObjectDomainEvent ev) {
 ev.hide();
 }
}

A more sophisticated implementation could look inside the passed ev argument and selectively hide
or not based on the contributee.

7.1.3. Usage by other services

Bookmarks are used by the (non-ASF) Isis addons' command module’s implementation of
BackgroundCommandService, which uses a bookmark to capture the target object on which an action
will be invoked subsequently.

Bookmarks are also used by the (non-ASF) Isis addons' publishing module’s implementation of
PublishingService, and by the (non-ASF) Isis addons' auditing module’s implementation of
AuditerService.

7.1.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of BookmarkService is
automatically registered (it is annotated with @DomainService) so no further configuration is
required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

7.2. DeepLinkService
The DeepLinkService provides the ability to obtain a java.net.URI that links to a representation of
any (persisted) domain entity or view model.

A typical use case is to generate a clickable link for rendering in an email, PDF, tweet or other
communication.

7.2.1. API & Implementation

The API defined by DeepLinkService is:

public interface DeepLinkService {
 URI deepLinkFor(Object domainObject); ①
}

103

http://github.com/isisaddons/isis-module-command
http://github.com/isisaddons/isis-module-publishing
http://github.com/isisaddons/isis-module-auditing
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

① Creates a URI that can be used to obtain a representation of the provided domain object in one
of the Apache Isis viewers.

The Wicket viewer this provides an implementation for accessing the representation through this
viewer. (For the RestfulObjects viewer, a URL can be constructed according to the Restful Objects
spec in conjunction with a Bookmark obtained via the BookmarkService).

7.2.2. Usage within the framework

The EmailNotificationService uses this service in order to generate emails as part of user
registration.

7.2.3. Implementations

The Wicket viewer core framework provides a default implementation of this API:

• org.apache.isis.viewer.wicket.viewer.services.DeepLinkServiceWicket

7.2.4. Registering the Services

Assuming that the <code>configuration-and-annotation</code> services installer is configured
(implicit if using the <code>AppManifest</code> to bootstrap the app),
_and that the Wicket viewer is being used, then an implementation
of <code>DeepLinkService</code> is automatically registered and injected (it is annotated with
<code>@DomainService</code>) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

7.3. EmailService
The EmailService provides the ability to send HTML emails, with attachments, to one or more
recipients.

Apache Isis provides a default implementation to send emails using an external SMTP provider.
Note that this must be configured (using a number of configuration properties) before it can be
used. The that sends email as an HTML message, using an external SMTP provider.

7.3.1. API & Implementation

The API for the service is:

104

ugvw.pdf
ugvro.pdf
http://www.restfulobjects.org
http://www.restfulobjects.org
ugvw.pdf#_ugvw_features_user-registration
ugvw.pdf#_ugvw_features_user-registration
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

public interface EmailService {
 boolean send(①
 List<String> to, List<String> cc, List<String> bcc, ②
 String subject,
 String body, ③
 DataSource... attachments);
 boolean isConfigured(); ④
}

① is the main API to send the email (and optional attachments). Will return false if failed to send

② pass either null or Collections.emptyList() if not required

③ should be HTML text

④ indicates whether the implementation was configured and initialized correctly. If this returns
false then any attempt to call send(…) will fail.

As noted in the introduction, the core framework provides a default implementation
(EmailServiceDefault) that sends email as an HTML message, using an external SMTP provider.

7.3.2. Configuration

To use this service the following properties must be configured:

• isis.service.email.sender.address

• isis.service.email.sender.password

and these properties may optionally be configured (each has a default to use gmail, documented
here):

• isis.service.email.sender.hostname

• isis.service.email.port

• isis.service.email.tls.enabled

These configuration properties can be specified either in isis.properties or in an external
configuration file.

If prototyping (that is, running the app using org.apache.isis.WebServer), the configuration
properties can also be specified as system properties. For example, if you create a test email
account on gmail, you can configure the service using:

-Disis.service.email.sender.address=xxx@gmail.com
-Disis.service.email.sender.password=yyy

where "xxx" is the gmail user account and "yyy" is its password

7.3.3. Alternative Implementations

If you wish to write an alternative implementation, be aware that it should process the message

105

rgcfg.pdf#_rgcfg_configuring-core
ugbtb.pdf#_ugbtb_deployment_externalized-configuration
ugbtb.pdf#_ugbtb_deployment_externalized-configuration

body as HTML (as opposed to plain text or any other format).

Also, note that (unlike most Apache Isis domain services) the implementation is also instantiated
and injected by Google Guice. This is because EmailService is used as part of the user registration
functionality and is used by Wicket pages that are accessed outside of the usual Apache Isis
runtime. This implies a couple of additional constraints:

• first, implementation class should also be annotated with @com.google.inject.Singleton

• second, there may not be any Apache Isis session running. (If necessary, one can be created on
the fly using IsisContext.doInSession(…))

To ensure that your alternative implementation takes the place of the default implementation,
register it explicitly in isis.properties.

7.3.4. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of EmailService service
is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

7.3.5. Related Services

The email service is used by the EmailNotificationService which is, in turn, used by
UserRegistrationService.

7.4. GuiceBeanProvider
The GuiceBeanProvider domain service acts as a bridge between Apache Isis' Wicket viewer internal
bootstrapping using Google Guice.

This service operates at a very low-level, and you are unlikely to have a need for it. It is used
internally by the framework, in the default implementation of the DeepLinkService.

Currently Apache Isis uses a combination of Guice (within the Wicket viewer
only) and a home-grown dependency injection framework. In future versions we
intended to refactor the framework to use CDI throughout. At that time this
service is likely to become redundant because we will allow any of the internal
components of Apache Isis to be injected into your domain object code.

7.4.1. API & Implementation

The API defined by this service is:

106

ugvw.pdf#_ugvw_features_user-registration
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugvw.pdf
https://github.com/google/guice

public interface GuiceBeanProvider {
 @Programmatic
 <T> T lookup(Class<T> beanType);
 @Programmatic
 <T> T lookup(Class<T> beanType, final Annotation qualifier);
}

The Wicket viewer this provides an implementation of this service.

7.4.2. Usage

Using the Wicket viewer requires subclassing of IsisWicketApplication. In the subclass it is
commonplace to override newIsisWicketModule(), for example:

@Override
protected Module newIsisWicketModule() {
 final Module isisDefaults = super.newIsisWicketModule();
 final Module overrides = new AbstractModule() {
 @Override
 protected void configure() {
 bind(String.class).annotatedWith(Names.named("applicationName"))
 .toInstance("ToDo App");
 bind(String.class).annotatedWith(Names.named("applicationCss"))
 .toInstance("css/application.css");
 bind(String.class).annotatedWith(Names.named("applicationJs"))
 .toInstance("scripts/application.js");
 ...
 }
 };
 return Modules.override(isisDefaults).with(overrides);
}

This "module" is in fact a Guice module, and so the GuiceBeanProvider service can be used to lookup
any of the components bound into it.

For example:

public class SomeDomainObject {
 private String lookupApplicationName() {
 return guiceBeanProvider.lookup(String.class, Names.named("applicationName"));
 }
 @Inject
 GuiceBeanProvider guiceBeanProvider;
}

should return "ToDo App".

107

ugvw.pdf
ugvw.pdf

7.4.3. Registering the Services

Assuming that the <code>configuration-and-annotation</code> services installer is configured
(implicit if using the <code>AppManifest</code> to bootstrap the app),
_and that the Wicket viewer is being used, then an implementation
of <code>GuiceBeanProvider</code> is automatically registered and injected (it is annotated with
<code>@DomainService</code>) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

7.5. JaxbService
The JaxbService allows instances of JAXB-annotated classes to be marshalled to XML and
unmarshalled from XML back into domain objects.

7.5.1. API & Implementation

The API defined by JaxbService is:

public interface JaxbService {
 @Programmatic
 <T> T fromXml(Class<T> domainClass, String xml);
①
 @Programmatic
 public String toXml(final Object domainObject);
②
 public enum IsisSchemas {
③
 INCLUDE, IGNORE
 }
 @Programmatic
 public Map<String, String> toXsd(final Object domainObject, final IsisSchemas
isSchemas);} ④
}

① unmarshalls the XML into an instance of the class.

② marshalls the domain object into XML

③ whether to include or exclude the Isis schemas in the generated map of XSDs. Discussed further
below.

④ generates a map of each of the schemas referenced; the key is the schema namespace, the value
is the XML of the schema itself.

With respect to the IsisSchemas enum: a JAXB-annotated domain object will live in its own XSD
namespace and may reference multiple other XSD schemas. In particular, many JAXB domain
objects will reference the common Isis schemas (for example the OidDto class that represents a

108

rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgcms.pdf#_rgcms_schema

reference to a persistent entity). The enum indicates whether these schemas should be included or
excluded from the map.

Isis provides a default implementation of the service,
o.a.i.schema.services.jaxb.JaxbServiceDefault.

7.5.2. Usage within the framework

This service is provided as a convenience for applications, but is also used internally by the
framework to @XmlRootElement-annotated view models. The functionality to download XML and
XSD schemas is also exposed in the UI through mixins to Dto interface.

7.5.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of JaxbService service
is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

7.6. MementoService (deprecated)
The MementoService was originally introduced to simplify the implementation of ViewModels which
are required by the framework to return string representation of all of their backing state,
moreover which is safe for use within a URL. This usage is deprecated; use JAXB view models
instead.

The service can also be used to create a memento of arbitrary objects, however this usage is also
deprecated. (Prior to 1.13.0 it was used internally by the core implementation of BackgroundService
to capture the state of action invocations so that they can be executed by a background process; this
is now done using CommandDtoServiceInternal).

 As of 1.13.0 this service is deprecated, replaced by internal domain services.

7.6.1. API & Implementation

The API defined by MementoService is:

109

rgant.pdf#_rgant-XmlRootElement
ugbtb.pdf#_ugbtb_view-models
rgcms.pdf#_rgcms_classes_mixins_Dto
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugbtb.pdf#_ugbtb_view-models
ugbtb.pdf#_ugbtb_view-models_jaxb
rgfis.pdf#_rgfis_spi_CommandDtoServiceInternal

@Deprecated
public interface MementoService {
 @Deprecated
 public static interface Memento {
 public Memento set(String name, Object value);
 public <T> T get(String name, Class<T> cls);
 public String asString();
 public Set<String> keySet();
 }
 public Memento create();
 public Memento parse(final String str);
 public boolean canSet(Object input);
}

The core framework provides a default implementation of this API, namely
o.a.i.c.r.services.memento.MementoServiceDefault. The string returned (from Memento#asString())
is a base-64 URL encoded representation of the underlying format (an XML string).

In fact, the MementoServiceDefault implementation does provide a mechanism to
disable the URL encoding, but this is not part of the MementoService public API.
Note also that the encoding method is not pluggable.

The types of objects that are supported by the MementoService are implementation-specific, but
would typically include all the usual value types as well as Apache Isis' Bookmark class (to represent
references to arbitrary entities). Nulls can also be set.

In the case of the default implementation provided by the core framework, the types supported are:

• java.lang.String

• java.lang.Boolean, boolean

• java.lang.Byte, byte

• java.lang.Short, short

• java.lang.Integer, int

• java.lang.Long, long

• java.lang.Float, float

• java.lang.Double, double

• java.lang.Character, char

• java.math.BigDecimal

• java.math.BigInteger

• org.joda.time.LocalDate

• org.apache.isis.applib.services.bookmark.Bookmark

If using another implementation, the canSet(…) method can be used to check if the candidate
object’s type is supported.

110

7.6.2. Usage

As noted in the introduction, a common use case for this service is in the implementation of the
ViewModel interface.

Rather than implementing ViewModel, it’s usually easier to annotate your view
models with @ViewModel (or equivalently @DomainObject#nature=EXTERNAL_ENTITY or
@DomainObject#nature=INMEMORY_ENTITY.

For example, suppose you were implementing a view model that represents an external entity in a
SOAP web service. To access this service the view model needs to store (say) the hostname, port
number and an id to the object.

Using an injected MementoService the view model can roundtrip to and from this string, thus
implementing the ViewModel API:

public class ExternalEntity implements ViewModel {
 private String hostname;
 private int port;
 private String id;
 public String viewModelMemento() { ①
 return mementoService.create()
 .set("hostname", hostname)
 .set("port", port)
 .set("id", id)
 .asString();
 }
 public void viewModelInit(String mementoStr) { ②
 Memento memento = mementoService.parse(mementoStr);
 hostname = memento.get("hostname", String.class);
 port = memento.get("port", int.class);
 id = memento.get("id", String.class);
 ...
 @Inject
 MementoService mementoService;
}

① part of the ViewModel API

② part of the ViewModel API

7.6.3. Related Services

(Prior to 1.13.0), the memento service was used by the CommandContext service and also
BackgroundCommandService. These both use a memento to capture a representation of an action
invocation. This is now done using CommandDtoServiceInternal.

111

rgcms.pdf#_rgcms_classes_super_AbstractViewModel
rgant.pdf#_rgant-ViewModel
rgant.pdf#_rgant-DomainObject_nature
rgant.pdf#_rgant-DomainObject_nature
rgfis.pdf#_rgfis_spi_CommandDtoServiceInternal

7.6.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of MementoService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

7.7. XmlSnapshotService
The XmlSnapshotService provides the capability to generate XML snapshots (and if required
corresponding XSD schemas) based on graphs of domain objects.

Typical use cases include creating mementos for business-focused auditing, such that a report could
be generated as to which end-user performed a business action (perhaps for legal reasons). For one
system that we know of, a digest of this snapshot of data is signed with the public encryption key so
as to enforce non-repudiation.

Another use case is to grab raw data such that it could be merged into a report template or
communication.

The service offers a basic API to create a snapshot of a single object, and an more flexible API that
allows the size of the graph to be customized.

The core framework provides an implementation of this service
(o.a.i.core.runtime.services.xmlsnapshot.XmlSnapshotServiceDefault).

7.7.1. Standard API

The (basic) API of XmlSnapshotService is:

public interface XmlSnapshotService {
 public interface Snapshot {
 Document getXmlDocument();
 Document getXsdDocument();
 String getXmlDocumentAsString();
 String getXsdDocumentAsString();
 }
 @Programmatic
 public XmlSnapshotService.Snapshot snapshotFor(Object domainObject);
 ...
}

The most straight-forward usage of this service is simply:

112

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

XmlSnapshot snapshot = xmlsnapshotService.snapshotFor(customer);
Element customerAsXml = snapshot.getXmlElement();

This will return an XML (document) element that contains the names and values of each of the
customer’s value properties, along with the titles of reference properties, and also the number of
items in collections.

As well as obtaining the XML snapshot, it is also possible to obtain an XSD schema that the XML
snapshot conforms to.

XmlSnapshot snapshot = ...;
Element customerAsXml = snapshot.getXmlElement();
Element customerXsd = snapshot.getXsdElement();

This can be useful for some tools. For example, Altova Stylevision can use the XML and XSD to
transform into reports. Please note that this link does not imply endorsement (nor even a
recommendation that this is a good design).

7.7.2. Builder API

The contents of the snapshot can be adjusted by including "paths" to other references or collections.
To do this, the builder is used. The API for this is:

public interface XmlSnapshotService {
 ...
 public interface Builder {
 void includePath(final String path);
 void includePathAndAnnotation(String path, String annotation);
 XmlSnapshotService.Snapshot build();
 }
 @Programmatic
 public XmlSnapshotService.Builder builderFor(Object domainObject);
}

We start by obtaining a builder:

XmlSnapshot.Builder builder = xmlsnapshotService.builderFor(customer);

Suppose now that we want the snapshot to also include details of the customer’s address, where
address in this case is a reference property to an instance of the Address class. We can "walk-the-
graph" by including these references within the builder.

builder.includePath("address");

113

http://www.altova.com/stylevision.html

We could then go further and include details of every order in the customer’s orders collection, and
details of every product of every order:

builder.includePath("orders/product");

When all paths are included, then the builder can build the snapshot:

XmlSnapshot snapshot = builder.build();
Element customerAsXml = snapshot.getXmlElement();

All of this can be strung together in a fluent API:

Element customerAsXml = xmlsnapshotService.builderFor(customer)
 .includePath("address")
 .includePath("orders/product")
 .build()
 .getXmlElement();

As you might imagine, the resultant XML document can get quite large very quickly with only a few
"include"s.

If an XSD schema is beng generated (using snapshot.getXsdElement() then note
that for the XSD to be correct, the object being snapshotted must have non-null
values for the paths that are `include()’d. If this isn’t done then the XSD will not
be correct reflect for another snapshotted object that does have non-null values.

7.7.3. Automatic inclusions

If the domain object being snapshotted implements the SnapshottableWithInclusions interace, then
this moves the responsibility for determining what is included within the snapshot from the caller
to the snapshottable object itself:

public interface SnapshottableWithInclusions extends Snapshottable {
 List<String> snapshotInclusions();
}

If necessary, both approaches can be combined.

114

As an alternative to using include(), you might consider building a view model
domain object which can reference only the relevant information required for
the snapshot. For example, if only the 5 most recent Orders for a Customer were
required, a CustomerAndRecentOrders view model could hold a collection of just
those 5 Orders. Typically such view models would implement
SnapshottableWithInclusions.

One reason for doing this is to provide a stable API between the domain model
and whatever it is that might be consuming the XML. With a view model you can
refactor the domain entities but still preserve a view model such that the XML is
the same.

7.7.4. Convenience API

The XmlSnapshotService also provides some API for simply manipulating XML:

public interface XmlSnapshotService {
 ...
 @Programmatic
 public Document asDocument(String xmlStr); ①
 @Programmatic
 public <T> T getChildElementValue(②
 Element el, String tagname, Class<T> expectedCls);
 @Programmatic
 public Element getChildElement(③
 Element el, String tagname);
 @Programmatic
 public String getChildTextValue(Element el); ④
}

① is a convenience method to convert xml string back into a W3C Document

② is a convenience method to extract the value of an XML element, based on its type.

③ is a convenience method to walk XML document.

④ is a convenience method to obtain value of child text node.

7.7.5. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of XmlSnapshotService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

115

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

7.7.6. Related Services

The BookmarkService provides a mechanism for obtaining a string representations of a single
domain object.

The MementoService also provides a mechanism for generating string representations of domain
objects.

The JaxbService is a simple wrapper around standard JAXB functionality for generating both XMLs
and XSDs from JAXB-annotated classes. Note that there is built-in support for JAXB classes (ie
annotated with @XmlRootElement) to be used as view models.

116

rgant.pdf#_rgant-XmlRootElement

Chapter 8. Metadata API
The metadata APIs provide access to the framework’s internal metamodel. These are generally of
use to support development-time activities, for example creating custom UIs through Swagger.

The table below summarizes the metadata APIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 7. Metadata API

API Description Implemen
tation

Notes

o.a.i.applib.
services.appfeat
ApplicationFeatureRepo
sitory

Provides access to string representations of the
features (package, class, class members) of the
domain classes within the metamodel.

Applicatio
nFeatureDe
fault
o.a.i.core
isis-core-
metamodel

(not visible
in UI)

o.a.i.applib.
services.layout
LayoutService

Provides the ability to download dynamic layout
XML files, in various styles.

LayoutServ
iceDefault
o.a.i.core
isis-core-
metamodel

Functionali
ty surfaced
in the UI
through
related
mixin and
menu.

o.a.i.applib.
services.metamodel
MetaModelService

Access to certain information from the Apache
Isis metamodel.

MetaModelS
erviceDefa
ult
o.a.i.core
isis-core-
metamodel

Functionali
ty surfaced
in the UI
through
related
menu.

o.a.i.applib.
services.registry
ServiceRegistry

Methods to access and use other domain
services.

ServiceReg
istry-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

117

http://www.isisaddons.org

API Description Implemen
tation

Notes

o.a.i.applib.
services.swagger
SwaggerService

Generates Swagger spec files to describe the
public and/or private RESTful APIs exposed by
the RestfulObjects viewer. These can then be
used with the Swagger UI page to explore the
REST API, or used to generate client-side stubs
using the Swagger codegen tool, eg for use in a
custom REST client app.

SwaggerSer
viceDefaul
t
o.a.i.core
isis-core-
metamodel

A
SwaggerSer
viceMenu
domain
service is
also
provided
which
enables the
swagger
spec to be
downloade
d. Apache
Isis' Maven
plugin also
provides a
swagger
goal which
allows the
spec file(s)
to be
generated
at build
time (eg so
that client-
side stubs
can then
be
generated
in turn).

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

8.1. ApplicationFeatureRepository
The ApplicationFeatureRepository provides the access to string representations of the packages,
classes and class members (collectively: "application features") of the domain classes within the
Apache Isis' internal metamodel.

118

http://swagger.io/
ugvro.pdf
http://swagger.io/swagger-ui/
http://swagger.io/swagger-codegen/
rgmvn.pdf#_rgmvn_swagger
rgmvn.pdf#_rgmvn_swagger

This functionality was originally implemented as part of (non-ASF) Isis Addons
security module, where the string representations of the various features are
used to represent permissions.

8.1.1. API & Implementation

The API defined by the service is:

public interface ApplicationFeatureRepository {
 List<String> packageNames();
 List<String> packageNamesContainingClasses(ApplicationMemberType memberType);
 List<String> classNamesContainedIn(String packageFqn, ApplicationMemberType
memberType);
 List<String> classNamesRecursivelyContainedIn(String packageFqn);
 List<String> memberNamesOf(String packageFqn, String className,
ApplicationMemberType memberType);
}

where ApplicationMemberType in turn is:

public enum ApplicationMemberType {
 PROPERTY,
 COLLECTION,
 ACTION;
}

These methods are designed primarily to return lists of strings for use in drop-downs.

8.1.2. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of
ApplicationFeatureRepository service is automatically registered and injected (it is annotated with
@DomainService) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

8.1.3. Related Services

The default implementation of this service - ApplicationFeatureRepositoryDefault uses the
ApplicationFeatureFactory service to instantiate ApplicationFeature instances.

8.2. LayoutService
The LayoutService provides the ability to obtain the XML layout for a single domain object or for all

119

http://isisaddons.org
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

domain objects. This functionality is surfaced through the user interface through a related mixin
and menu action.

8.2.1. API & Implementation

The API defined by LayoutService is:

public interface LayoutService {
 String toXml(Class<?> domainClass, Style style); ①
 byte[] toZip(Style style); ②
}

① Returns the serialized XML form of the layout (grid) for the specified domain class, in specified
style (discussed below).

② Returns (a byte array) of a zip of the serialized XML of the layouts (grids), for all domain entities
and view models.

The Style enum is defined as:

enum Style {
 CURRENT,
 COMPLETE,
 NORMALIZED,
 MINIMAL
}

The CURRENT style corresponds to the layout already loaded for the domain class, typically from an
already persisted layout.xml file. The other three styles allow the developer to choose how much
metadata is to be specified in the XML, and how much (if any) will be obtained elsewhere, typically
from annotations in the metamodel (but also from .layout.json file if present). The table below
summarises the choices:

Table 8. Table caption

Style @MemberGroupLayout @MemberOrder

@ActionLayout,
@PropertyLayout,
@CollectionLayout

COMPLETE serialized as XML serialized as XML serialized as XML

NORMALIZED serialized as XML serialized as XML not in the XML

MINIMAL serialized as XML not in the XML not in the XML

As a developer, you therefore have a choice as to how you provide the metadata required for
customised layouts:

• if you want all layout metadata to be read from the .layout.xml file, then download the
"complete" version, and copy the file alongside the domain class. You can then remove all
@MemberGroupLayout, @MemberOrder, @ActionLayout, @PropertyLayout and @CollectionLayout

120

rgant.pdf#_rgant-MemberGroupLayout
rgant.pdf#_rgant-MemberOrder
rgant.pdf#_rgant-ActionLayout
rgant.pdf#_rgant-PropertyLayout
rgant.pdf#_rgant-CollectionLayout

annotations from the source code of the domain class.

• if you want to use layout XML file to describe the grid (columns, tabs etc) and specify which
object members are associated with those regions of the grid, then download the "normalized"
version. You can then remove the @MemberGroupLayout and @MemberOrder annotations from the
source code of the domain class, but retain the @ActionLayout, @PropertyLayout and
@CollectionLayout annotations.

• if you want to use layout XML file ONLY to describe the grid, then download the "minimal"
version. The grid regions will be empty in this version, and the framework will use the
@MemberOrder annotation to bind object members to those regions. The only annotation that can
be safely removed from the source code with this style is the @MemberGroupLayout annotation.

8.2.2. Related Mixins and Menus

The service’s functionality is exposed in the UI through a mixin (per object) and a menu action (for
all objects):

• the Object mixin provides the ability to download the XML layout for any domain object (entity
or view model).

• the LayoutServiceMenu provides the ability to download all XML layouts as a single ZIP file (in
any of the three styles).

The XML can then be copied into the codebase of the application, and annotations in the domain
classes removed as desired.

8.2.3. Related Domain Services

The GridService is responsible for loading and normalizing layout XML for a domain class. It in
turn uses the GridLoaderService and GridSystemService services.

8.3. MetaModelService3
The MetaModelService3 service provides access to a number of aspects of Apache Isis' internal
metamodel.

8.3.1. API

The API defined by the service is:

121

rgant.pdf#_rgcms_classes_mixins_Object
rgant.pdf#_rgcms_classes_mixins_Object

public interface MetaModelService2 {
 Class<?> fromObjectType(String objectType); ①
 String toObjectType(Class<?> domainType); ②
 void rebuild(Class<?> domainType); ③
 List<DomainMember> export(); ④

 enum Sort { ⑤
 VIEW_MODEL, JDO_ENTITY, DOMAIN_SERVICE,
 MIXIN, VALUE, COLLECTION, UNKNOWN;
 }
 enum Mode {
 STRICT,
 RELAXED
 }
 Sort sortOf(Class<?> domainType); ⑥
 Sort sortOf(Bookmark bookmark);
 Sort sortOf(Class<?> domainType, Mode mode);
 Sort sortOf(Bookmark bookmark, Mode mode);
}

① reverse lookup of a domain class' object type

② lookup of a domain class' object type

③ invalidate and rebuild the internal metadata (an ObjectSpecification) for the specified domain
type.

④ returns a list of representations of each of member of each domain class.

⑤ what sort of object a domain type is (or bookmark) represents

⑥ whether to throw an exception or return Sort.UNKNOWN if the object type is not recognized. (The
overloads with no Mode parameter default to strict mode).

8.3.2. Implementation

The framework provides a default implementation of this service,
o.a.i.c.m.services.metamodel.MetaModelServiceDefault.

8.3.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of MetamodelService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

8.3.4. Related Services

The MetaModelServiceMenu provides a method to download all domain members as a CSV. Internally

122

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

this calls MetaModelService#export(). Under the covers this uses the API provided by the
ApplicationFeatureRepository domain service.

8.4. ServiceRegistry2
The ServiceRegistry2 service collects together methods for accessing other domain services.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

8.4.1. API

The API of ServiceRegistry2 is:

public interface ServiceRegistry2 {
 <T> T injectServicesInto(final T domainObject); ①
 <T> T lookupService(Class<T> service); ②
 <T> Iterable<T> lookupServices(Class<T> service); ③
 List<Object> getRegisteredServices(); ④
}

① injects services into domain object; used extensively internally by the framework (eg to inject to
other services, or to entities, or integration test instances, or fixture scripts).

② returns the first registered service that implements the specified class

③ returns an Iterable in order to iterate over all registered services that implement the specified
class

④ returns the list of all domain services that constitute the running application (including internal
domain services).

Service injection is done automatically if objects are created using the FactoryService.

8.4.2. Usage

The primary use case is to instantiate domain objects using a regular constructor ("new is the new
new"), and then using the #injectServicesInto(…) API to set up any dependencies.

For example:

Customer cust = serviceRegistry.injectServicesInto(new Customer());
cust.setFirstName("Freddie");
cust.setLastName("Mercury");
repositoryService.persist(cust);

The alternative is to use the FactoryService API which performs both steps in a single factory
method.

123

8.4.3. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.runtime.services.registry.ServiceRegistryDefault).

8.4.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of ServiceRegistry
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

8.5. SwaggerService
The SwaggerService generates Swagger spec files to describe the public and/or private RESTful APIs
exposed by the RestfulObjects viewer.

These spec files can then be used with the Swagger UI page to explore the REST API, or used to
generate client-side stubs using the Swagger codegen tool, eg for use in a custom REST client app.

Not all of the REST API exposed by the Restful Objects viewer is included in the
Swagger spec files; the emphasis is those REST resources that are used to develop
custom apps: domain objects, domain object collections and action invocations.
When combined with Apache Isis' own simplified representations, these are
pretty much all that is needed for this use case.

8.5.1. API & Implementation

The API defined by SwaggerService is:

public interface SwaggerService {
 enum Visibility {
 PUBLIC, ①
 PRIVATE, ②
 PRIVATE_WITH_PROTOTYPING; ③
 }
 enum Format { ④
 JSON,
 YAML
 }
 String generateSwaggerSpec(final Visibility visibility, final Format format);
}

① Generate a Swagger spec for use by third-party clients, ie public use. This specification is
restricted only to view models and to domain services with a nature of VIEW_REST_ONLY.

124

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
http://swagger.io/
ugvro.pdf
http://swagger.io/swagger-ui/
http://swagger.io/swagger-codegen/
ugvro.pdf
ugvro.pdf#_ugvro_simplified-representations
ugbtb.pdf#_ugbtb_view-models
rgant.pdf#_rgant-DomainService_nature

② Generate a Swagger spec for use only by internally-managed clients, ie private internal use.
This specification includes domain entities and all menu domain services (as well as any view
models).

③ Generate a Swagger spec that is the same as private case (above), but also including any
prototype actions.

④ Swagger specs can be written either in JSON or YAML format.

Isis provides a default implementation of the service,
o.a.i.core.metamodel.services.swagger.SwaggerServiceDefault.

8.5.2. Usage within the framework

This service is provided as a convenience for applications, it is not (currently) used by the
framework itself.

8.5.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of SwaggerService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

8.5.4. Related Services

A SwaggerServiceMenu domain service provides a prototype action that enables the swagger spec to
be downloaded from the Wicket viewer’s UI.

Apache Isis' Maven plugin also provides a swagger goal which allows the spec file(s) to be
generated at build time. this then allows client-side stubs can then be generated in turn as part of a
build pipeline.

125

rgant.pdf#_rgant-Action_restrictTo
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgmvn.pdf#_rgmvn_swagger

Chapter 9. Testing
The testing APIs provide functionality to domain objects for use when testing or demoing an
application.

The testing SPIs allow the framework to provide supporting functionality for use when testing or
demoing an application.

The table below summarizes the testing APIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 9. Testing API

API Description Implemen
tation

Notes

o.a.i.applib.
fixturescripts.
ExecutionParametersSer
vice

… ExecutionP
arametersS
ervice
o.a.i.core
isis-core-
applib

API is also
a concrete
class

o.a.i.applib.
services.
fixturespec
FixtureScriptsDefault

Fallback implementation of FixtureScripts,
providing the ability to execute fixture scripts.

FixtureScr
iptsDefaul
t
o.a.i.core
isis-core-
applib

Interacts
with
FixtureScr
ipts-
Specificat
ionProvide
r.

o.a.i.applib.
services.fixturespec
FixtureScripts-
SpecificationProvider

Provides settings for FixtureScriptsDefault
fallback domain service for executing fixture
scripts.

o.a.i.applib.
services.sudo
SudoService

For use in testing while running fixture scripts,
allows a block of code to run as a specified user
account.

SudoServic
eDefault
o.a.i.core
isis-core-
runtime

API is also
a concrete
class

o.a.i.applib.
fixtures.switchuser
SwitchUserServiceServi
ce

(deprecated) SwitchUser
ServiceImp
l
o.a.i.core
isis-core-
runtime

The table below summarizes the testing SPIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 10. Testing SPI

126

http://www.isisaddons.org
rgcms.pdf#_rgcms_classes_super_FixtureScripts
rgcms.pdf#_rgcms_classes_super_FixtureScripts
http://www.isisaddons.org

SPI Description Implemen
tation

Notes

9.1. ExecutionParametersService
The ExecutionParametersService …

Apache Isis provides a default implementation

9.1.1. API & Implementation

The API and implementation of this service is simply:

public class ExecutionParametersService {
 public ExecutionParameters newExecutionParameters(final String parameters) {
 return new ExecutionParameters(parameters);
 }
}

9.2. FixtureScriptsDefault
The FixtureScriptsDefault service provides the ability to execute fixture scripts .

The service extends from the FixtureScripts, and is only instantiated by the framework if there no
custom implementation of FixtureScripts has been otherwise provided; in other words it is a
fallback.

If this service is instantiated (as a fallback) then it uses the FixtureScriptsSpecificationProvider to
obtain a FixtureScriptsSpecification. This configures this service, telling it which package to
search for FixtureScript classes, how to execute those classes, and hints that influence the UI.

We recommend using FixtureScriptsSpecificationProvider rather than
subclassing FixtureScripts.

9.2.1. API & Implementation

The API for the service is:

public class FixtureScriptsDefault ... {
 @Programmatic
 public List<FixtureResult> runFixtureScript(
 FixtureScript fixtureScript,
 String parameters) { ... }
}

i. in other words the same as FixtureScripts superclass that it inherits from.

127

ugtst.pdf#_ugtst_fixture-scripts_api-and-usage
rgcms.pdf#_rgcms_classes_super_FixtureScripts
rgcms.pdf#_rgcms_classes_super_FixtureScripts
rgcms.pdf#_rgcms_classes_super_FixtureScripts

9.2.2. Configuration

As noted in the introduction, this service is only instantiated if there is no other implementation of
FixtureScripts available on the classpath.

If an instance of FixtureScriptsSpecificationProvider is available on the classpath, then the service
will be visible in the UI (assuming prototype mode). Otherwise the service will be available only to
be injected and invoked programmatically.

9.2.3. Related Services

The service interacts with FixtureScriptsSpecificationProvider.

9.3. FixtureScriptsSpec’nProvider
The FixtureScriptsSpecificationProvider configures the FixtureScriptsDefault domain service,
providing the location to search for fixture scripts and other settings.

The service is only used if the FixtureScriptsDefault service is instantiated as a fallback by the
framework. If the application provides its own subclass of FixtureScripts superclass, then this
provider service is not used.

Of the two designs, we encourage you to implement this "provider" SPI rather
than subclass FixtureScripts. The primary benefit (apart from decoupling
responsibilities) is that it ensures that there is always an instance of
FixtureScripts available for use.

9.3.1. SPI

The SPI defined by the service is:

public interface FixtureScriptsSpecificationProvider {
 @Programmatic
 FixtureScriptsSpecification getSpecification();
}

where FixtureScriptsSpecification exposes these values:

128

rgcfg.pdf#_rgcfg_deployment-types
rgcms.pdf#_rgcms_classes_super_FixtureScripts

public class FixtureScriptsSpecification {
 public String getPackagePrefix() { ... }
 public FixtureScripts.NonPersistedObjectsStrategy getNonPersistedObjectsStrategy()
{ ... }
 public FixtureScripts.MultipleExecutionStrategy getMultipleExecutionStrategy() {
... }
 public Class<? extends FixtureScript> getRunScriptDefaultScriptClass() { ... }
 public DropDownPolicy getRunScriptDropDownPolicy() { ... }
 public Class<? extends FixtureScript> getRecreateScriptClass() { ... }
 ...
}

The class is immutable but it has a builder (obtained using FixturescriptsSpecification.builder(…
)) for a fluent API.

9.3.2. Implementation

The SimpleApp archetype has a simple implementation of this service:

@DomainService(nature = NatureOfService.DOMAIN)
public class DomainAppFixturesProvider implements FixtureScriptsSpecificationProvider
{
 @Override
 public FixtureScriptsSpecification getSpecification() {
 return FixtureScriptsSpecification
 .builder(DomainAppFixturesProvider.class)
 .with(FixtureScripts.MultipleExecutionStrategy.EXECUTE)
 .withRunScriptDefault(RecreateSimpleObjects.class)
 .withRunScriptDropDown(FixtureScriptsSpecification.DropDownPolicy
.CHOICES)
 .withRecreate(RecreateSimpleObjects.class)
 .build();
 }
}

9.4. SudoService
The SudoService allows the current user reported by the UserService to be temporarily changed to
some other user. This is useful both for integration testing (eg if testing a workflow system whereby
objects are moved from one user to another) and while running fixture scripts (eg setting up objects
that would normally require several users to have acted upon the objects).

9.4.1. API

The API provided by the service is:

129

ugfun.pdf#_ugfun_getting-started_simpleapp-archetype
ugtst.pdf#_ugtst_integ-test-support
ugtst.pdf#_ugtst_fixture-scripts

public interface SudoService {
 @Programmatic
 void sudo(String username, final Runnable runnable);
 @Programmatic
 <T> T sudo(String username, final Callable<T> callable);
 @Programmatic
 void sudo(String username, List<String> roles, final Runnable runnable);
 @Programmatic
 <T> T sudo(String username, List<String> roles, final Callable<T> callable);
}

which will run the provided block of code (a Runnable or a Callable) in a way such that calls to
UserService#getUser() will return the specified user (and roles, if specified). (If roles are not
specified, then the roles of the current user are preserved).

The current user/role reported by the internal AuthenticationSessionProvider will also return the
specified user/roles.

Note however that this the "effective user" does not propagate through to the
Shiro security mechanism, which will continue to be evaluated according to the
permissions of the current user. See the ACCESS-ALL-ROLE below for details of how
to circumvent this.

9.4.2. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.runtime.services.sudo.SudoServiceDefault).

9.4.3. Usage

A good example can be found in the (non-ASF) Isis addons' todoapp which uses the SudoService in a
fixture script to set up ToDoItem objects:

protected void execute(final ExecutionContext ec) {
 ...
 sudoService.sudo(getUsername(),
 new Runnable() {
 @Override
 public void run() {
 wrap(toDoItem).completed();
 }
 });
 ...
}

130

rgfis.pdf#_rgfis_spi_AuthenticationSessionProvider
ugsec.pdf
http://github.com/isisaddons/isis-app-todoapp

ACCESS_ALL_ROLE

When sudo(…) is called the "effective user" is reported by both UserService and by
AuthenticationSessionProvider, but does not propagate through to the Shiro security mechanism.
These continue to be evaluated according to the permissions of the current user.

This can be a problem in certain use cases. For example if running a fixture script (which uses the
WrapperFactory) from within an implementation of UserRegistrationService, this is likely to result in
HiddenExceptions being thrown because there is no effective user.

In such cases, permission checking can simply be disabled by specifying
SudoService.ACCESS_ALL_ROLE as one of the roles. For example:

protected void execute(final ExecutionContext ec) {
 ...
 sudoService.sudo(getUsername(), Arrays.asList(SudoService.ACCESS_ALL_ROLE),
 new Runnable() {
 @Override
 public void run() {
 wrap(toDoItem).completed();
 }
 });
 ...
}

In the future this service may be used more deeply, eg to propagate permissions
through to the Shiro security mechanism also.

9.4.4. SPI

The SudoService.Spi service allows implementations of SudoService to notify other
services/components that the effective user and roles are different. The default implementation of
UserService has been refactored to leverage this SPI.

public interface SudoService {
 ...
 interface Spi {
 void runAs(String username, List<String> roles); ①
 void releaseRunAs(); ②
 }
}

① Called by SudoService#sudo(…), prior to invoking its Runnable or Callable.

② Called by SudoService#sudo(…), after its Runnable or Callable has been invoked.

The names of these methods were chosen based on similar names within Shiro.

131

rgfis.pdf#_rgfis_spi_AuthenticationSessionProvider
ugsec.pdf
href:https://shiro.apache.org/static/1.2.6/apidocs/org/apache/shiro/subject/Subject.html#runAs-org.apache.shiro.subject.PrincipalCollection-

9.4.5. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of SudoService service
is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

9.5. SwitchUserService (deprecated)
The SwitchUserService domain service provides the ability to install fixtures changing the effective
user half-way through. For example, this allows the setup of a test of a workflow system which
checks that work is moved between different users of the system.

 This service is deprecated; use fixture scripts and the SudoService instead.

9.5.1. API

The API of this service:

public class SwitchUserService {
 void switchUser(String username, String... roles); ①
 void switchUser(String username, List<String> roles); ②
}

① Switches the current user with the list of specified roles.

② Switches the current user with the list of specified roles.

9.5.2. Implementation

The framework provides a default implementation of this service: SwitchUserServiceImpl in isis-
core-runtime

132

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
ugtst.pdf#_ugtst_fixture-scripts

Chapter 10. Persistence Layer API
The persistence layer APIs provide domain objects with tools to manage the interactions with the
persistence layer, for example adding on-the-fly caching to queries that are called many times
within a loop.

The table below summarizes the persistence layer APIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 11. Persistence Layer API

API Description Implemen
tation

Notes

o.a.i.applib.
services.jdosupport
IsisJdoSupport

Lower level access to the JDO Persistence API. IsisJdoSup
portImpl
o.a.i.core
isis-core-
runtime

o.a.i.applib.
services.metrics
MetricsService

Gathers and provides metrics on the numbers of
objects used within a transaction.

MetricsSer
viceDefaul
t
o.a.i.core
isis-core-
runtime

o.a.i.applib.
services.
queryresultscache
QueryResultsCache

Request-scoped caching of the results of queries
(or any data set generated by a given set of input
arguments).

QueryResul
tsCache
o.a.i.core
isis-core-
applib

API is also
a concrete
class

o.a.i.applib.
services.repository
RepositoryService

Methods to help implement repositories: query
for existing objects, persist new or delete
existing objects

Repository
Service-
Default
o.a.i.core
isis-core-
metamodel

Supercedes
methods in
DomainObje
ctContaine
r.

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

10.1. IsisJdoSupport
The IsisJdoSupport service provides a number of general purpose methods for working with the
JDO/DataNucleus objectstore. In general these act at a lower-level of abstraction than the APIs

133

http://www.isisaddons.org

normally used (specifically, those of DomainObjectContainer), but nevertheless deal with some of the
most common use cases. For service also provides access to the underlying JDO PersistenceManager
for full control.

The following sections discuss the functionality provided by the service, broken out into categories.

10.1.1. Executing SQL

You can use the IsisJdoSupportService to perform arbitrary SQL SELECTs or UPDATEs:

public interface IsisJdoSupport {
 @Programmatic
 List<Map<String, Object>> executeSql(String sql);
 @Programmatic
 Integer executeUpdate(String sql);
 ...
}

The executeSql(…) method allows arbitrary SQL SELECT queries to be submitted:

List<Map<String, Object>> results = isisJdoSupport.executeSql("select * from
custMgmt.customers");

The result set is automatically converted into a list of maps, where the map key is the column name.

In a similar manner, the executeUpdate(…) allows arbitrary SQL UPDATEs to be performed.

int count = isisJdoSupport.executeUpdate("select count(*) from custMgmt.customers);

The returned value is the number of rows updated.

As an alternative, consider using DataNucleus' type-safe JDO query API, discussed
below.

10.1.2. Type-safe JDOQL Queries

DataNucleus provides an extension to JDO, so that JDOQL queries can be built up and executed
using a set of type-safe classes.

The types in question for type safe queries are not the domain entities, but rather are companion
"Q…" query classes. These classes are generated dynamically by an annotation processor as a side-
effect of compilation, one "Q…" class for each of the @PersistenceCapable domain entity in your
application. For example, a ToDoItem domain entity will give rise to a QToDoItem query class. These
"Q…" classes mirror the structure of domain entity, but expose properties that allow predicates to
be built up for querying instances, as well as other functions in support of order by. group by and
other clauses.

134

http://www.datanucleus.org/products/accessplatform_4_0/jdo/jdoql_typesafe.html
http://www.datanucleus.org/products/accessplatform_4_0/jdo/jdoql_typesafe.html
https://www.jcp.org/en/jsr/detail?id=269
rgant.pdf#_rgant-PersistenceCapable

Most IDEs (including IntelliJ and Eclipse) enable annotation processing by default,
as does Maven. The DataNucleus' documentation offers some guidance on
confirming that APT is enabled.

The IsisJdoSupport service offers two methods at different levels of abstraction:

public interface IsisJdoSupport {
 @Programmatic
 <T> List<T> executeQuery(final Class<T> cls, final BooleanExpression be);
 @Programmatic
 <T> TypesafeQuery<T> newTypesafeQuery(Class<T> cls);
 ...
}

The executeQuery(…) method supports the common case of obtaining a set of objects that meet
some criteria, filtered using the provided BooleanExpression. To avoid memory leaks, the returned
list is cloned and the underlying query closed.

For example, in the (non-ASF) Isis addons' todoapp there is an implementation of
ToDoItemRepository using type-safe queries. The following JDOQL:

SELECT
FROM todoapp.dom.module.todoitem.ToDoItem
WHERE atPath.indexOf(:atPath) == 0
 && complete == :complete")

can be expressed using type-safe queries as follows:

public List<ToDoItem> findByAtPathAndCategory(final String atPath, final Category
category) {
 final QToDoItem q = QToDoItem.candidate();
 return isisJdoSupport.executeQuery(ToDoItem.class,
 q.atPath.eq(atPath).and(
 q.category.eq(category)));
}

 You can find the full example of the JDOQL equivalent in the
DomainObjectContainer

The newTypesafeQuery(…) method is a lower-level API that allows a type safe query to be
instantiated for most sophisticated querying, eg using group by or order by clauses. See the
DataNucleus documentation for full details of using this.

One thing to be aware of is that after the query has been executed, it should be closed, using
query.closeAll(). If calling query.executeList() we also recommend cloning the resultant list first.
The following utility method does both of these tasks:

135

http://www.datanucleus.org/products/accessplatform_4_0/jdo/jdoql_typesafe.html
http://github.com/isisaddons/isis-app-todoapp
http://www.datanucleus.org/products/accessplatform_4_0/jdo/jdoql_typesafe.html

private static <T> List<T> executeListAndClose(final TypesafeQuery<T> query) {
 final List<T> elements = query.executeList();
 final List<T> list = Lists.newArrayList(elements);
 query.closeAll();
 return list;
}

10.1.3. Fixture support

When writing integration tests you’ll usually need to tear down some/all mutable transactional data
before each test. One way to do that is to use the executeUpdate(…) method described above.

Alternatively, the deleteAll(…) method will let your test delete all instances of a class without
resorting to SQL:

public interface IsisJdoSupport {
 @Programmatic
 void deleteAll(Class<?>... pcClasses);
 ...
}

For example:

public class TearDownAll extends FixtureScriptAbstract {
 @Override
 protected void execute(final ExecutionContext ec) {
 isisJdoSupport.deleteAll(Order.class);
 isisJdoSupport.deleteAll(CustomerAddress.class);
 isisJdoSupport.deleteAll(Customer.class);
 }
 @Inject
 IsisJdoSupport isisJdoSupport;
}

It can occasionally be the case that Apache Isis' internal adapter for the domain
object is still in memory. JDO/DataNucleus seems to bump up the version of the
object prior to its deletion, which under normal circumstances would cause
Apache Isis to throw a concurrency exception. Therefore to prevent this from
happening (ie to force the deletion of all instances), concurrency checking is
temporarily disabled while this method is performed.

10.1.4. Reloading entities

An (intentional) limitation of JDO/DataNucleus is that persisting a child entity (in a 1:n bidirectional
relationship) does not cause the parent’s collection to be updated.

136

ugtst.pdf#_ugtst_integ-test-support
http://www.datanucleus.org/products/datanucleus/jdo/orm/relationships.html

public interface IsisJdoSupport {
 @Programmatic
 <T> T refresh(T domainObject);
 @Programmatic
 void ensureLoaded(Collection<?> collectionOfDomainObjects);
 ...
}

The refresh(T domainObject) method can be used to reload the parent object (or indeed any object).
Under the covers it uses the JDO PersistenceManager#refresh(…) API.

For example:

@DomainService(nature=NatureOfService.VIEW_CONTRIBUTIONS_ONLY)
public class OrderContributions {
 public Order newOrder(final Customer customer) {
 Order order = newTransientInstance(Order.class);
 order.setCustomer(customer);
 container.persist(customer);
 container.flush(); ①
 isisJdoSupport.refresh(customer); ②
 return order;
 }
 @Inject
 DomainObjectContainer container;
 @Inject
 IsisJdoSupport isisJdoSupport;
}

① flush to database, ensuring that the database row corresponding to the Order exists in its order
table.

② reload the parent (customer) from the database, so that its collection of Orders is accurate.

The particular example that led to this method being added was a 1:m
bidirectional relationship, analogous to Customer 1←→* Order. Persisting the
child Order object did not cause the parent Customer's collection of orders to be
updated. In fact, JDO does not make any such guarantee to do so. Options are
therefore either to maintain the collection in code, or to refresh the parent.

The ensureLoaded(…) method allows a collection of domain objects to be loaded from the database
in a single hit. This can be valuable as a performance optimization to avoid multiple roundtrips to
the database. Under the covers it uses the PersistenceManager#retrieveAll(…) API.

10.1.5. JDO PersistenceManager

The functionality provided by IsisJdoSupport focus only on the most common use cases. If you
require more flexibility than this, eg for dynamically constructed queries, then you can use the

137

service to access the underlying JDO PersistenceManager API:

public interface IsisJdoSupport {
 @Programmatic
 PersistenceManager getJdoPersistenceManager();
 ...
}

For example:

public List<Order> findOrders(...) {
 javax.jdo.PersistenceManager pm = isisJdoSupport.getPersistenceManager();

 // knock yourself out...

 return someListOfOrders;
}

10.1.6. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of IsisJdoSupport
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

10.2. MetricsService
The MetricsService is a request-scoped domain service that hooks into the JDO/DataNucleus
ObjectStore to provide a number of counters relating to numbers of object loaded, dirtied etc.

The service is used by the InteractionContext domain service (to populate the DTO held by the
Interaction.Execution) and also by the (internal) PublishingServiceInternal domain service (to
populate the PublishedObjects class.

10.2.1. API & Implementation

The API of the service is:

138

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder
rgfis.pdf#_rgfis_spi_PublishingServiceInternal

@RequestScoped
public interface MetricsService {
 int numberObjectsLoaded(); ①
 int numberObjectsDirtied(); ②
 int numberObjectPropertiesModified(); ③
}

① The number of objects that have, so far in this request, been loaded from the database.
Corresponds to the number of times that
javax.jdo.listener.LoadLifecycleListener#postLoad(InstanceLifecycleEvent) is fired.

② The number of objects that have, so far in this request, been dirtied/will need updating in the
database); a good measure of the footprint of the interaction. Corresponds to the number of
times that javax.jdo.listener.DirtyLifecycleListener#preDirty(InstanceLifecycleEvent)

callback is fired.

③ The number of individual properties of objects that were modified; a good measure of the
amount of work being done in the interaction. Corresponds to the number of times that the
AuditingService's (or AuditerService's) audit(…) method will be called as the transaction
completes.

The framework provides a default implementation of this API, namely
o.a.i.c.r.s.metrics.MetricsServiceDefault.

10.2.2. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' default implementation of MetricsService
class is automatically registered (it is annotated with @DomainService) so no further configuration is
required.

10.2.3. Related Services

The PublisherService also captures the metrics gathered by the MetricsService and publishes them
as part of the PublishedObjects class (part of its SPI).

10.3. QueryResultsCache
The purpose of the QueryResultsCache is to improve response times to the user, by providing a short-
term (request-scoped) cache of the value of some (safe or idempotent) method call. This will
typically be as the result of running a query, but could be any expensive operation.

Caching such values is useful for code that loops "naively" through a bunch of stuff, performing an
expensive operation each time. If the data is such that the same expensive operation is made many
times, then the query cache is a perfect fit.

This service was inspired by similar functionality that exists in relational
databases, for example Sybase’s subquery results cache and Oracle’s result_cache
hint.

139

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
../../more-advanced-topics/how-to-09-020-How-to-write-a-typical-domain-service.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc20023_1251/html/optimizer/X43480.htm
http://www.dba-oracle.com/oracle11g/oracle_11g_result_cache_sql_hint.htm

10.3.1. API & Implementation

The API defined by QueryResultsCache is:

@RequestScoped
public class QueryResultsCache {
 public static class Key {
 public Key(Class<?> callingClass, String methodName, Object... keys) {...}
 public Class<?> getCallingClass() { ... }
 public String getMethodName() { ... }
 public Object[] getKeys() { ... }
 }
 public static class Value<T> {
 public Value(T result) { ... }
 private T result;
 public T getResult() {
 return result;
 }
 }
 @Programmatic
 public <T> T execute(
 final Callable<T> callable,
 final Class<?> callingClass, final String methodName, final Object... keys) {
... }
 @Programmatic
 public <T> T execute(final Callable<T> callable, final Key cacheKey) { ... }
 @Programmatic
 public <T> Value<T> get(
 final Class<?> callingClass, final String methodName, final Object... keys) {
... }
 @Programmatic
 public <T> Value<T> get(final Key cacheKey) { ... }
 @Programmatic
 public <T> void put(final Key cacheKey, final T result) { ... }
}

This class (o.a.i.applib.services.queryresultscache.QueryResultsCache) is also the implementation.

10.3.2. Usage

Suppose that there’s a TaxService that calculates tax on Taxable items, with respect to some TaxType,
and for a given LocalDate. To calculate tax it must run a database query and then perform some
additional calculations.

Our original implementation is:

140

@DomainService
public class TaxService {
 public BigDecimal calculateTax(
 final Taxable t, final TaxType tt, final LocalDate d) {
 // query against DB using t, tt, d
 // further expensive calculations
 }
}

Suppose now that this service is called in a loop, for example iterating over a bunch of orders,
where several of those orders are for the same taxable products, say. In this case the result of the
calculation would always be the same for any given product.

We can therefore refactor the method to use the query cache as follows:

public class TaxService {
 public BigDecimal calculateTax(
 final Taxable t, final TaxType tt, final LocalDate d) {
 return queryResultsCache.execute(
 new Callable<BigDecimal>(){ ①
 public BigDecimal call() throws Exception {
 // query against DB using t, tt, d
 // further expensive calculations
 }
 },
 TaxService.class, ②
 "calculateTax",
 t, tt, d);
 }
}

① the Callable is the original code

② the remaining parameters in essence uniquely identify the method call.

This refactoring will be worthwhile provided that enough of the orders being processed reference
the same taxable products. If however every order is for a different product, then no benefit will be
gained from the refactoring.

10.3.3. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of QueryResultsCache
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

141

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

10.3.4. Related Services

The Scratchpad service is also intended for actions that are called many times, allowing arbitrary
information to be shared between them. Those methods could be called from some outer loop in
domain code, or by the framework itself if the action invoked has the @Action#invokeOn()
annotation attribute set to OBJECT_AND_COLLECTION or COLLECTION_ONLY.

10.4. RepositoryService
The RepositoryService collects together methods for creating, persisting and searching for entities
from the underlying persistence store. It acts as an abstraction over the JDO/DataNucleus
objectstore.

You can use it during prototyping to write naive queries (find all rows, then filter using the Guava
Predicate API, or you can use it to call JDO named queries using JDOQL.

As an alternative, you could also use JDO typesafe queries through the IsisJdoSupport service.

The methods in this service replace similar methods (now deprecated) in
DomainObjectContainer.

10.4.1. API

The API of RepositoryService is:

142

rgant.pdf#_rgant-Action_invokeOn
http://www.datanucleus.org/products/accessplatform_4_0/jdo/query.html#named
http://www.datanucleus.org/products/accessplatform_4_0/jdo/jdoql_typesafe.html

public interface RepositoryService {
 <T> T instantiate(final Class<T> ofType);
①

 boolean isPersistent(Object domainObject);
②
 void persist(Object domainObject);
③
 void persistAndFlush(Object domainObject);
④

 void remove(Object persistentDomainObject);
⑤
 void removeAndFlush(Object persistentDomainObject);
⑥

 <T> List<T> allInstances(Class<T> ofType, long... range);
⑦

 <T> List<T> allMatches(Query<T> query);
⑧
 <T> List<T> allMatches(Class<T> ofType, Predicate<? super T> predicate, long...
range); ⑨

 <T> T uniqueMatch(Query<T> query);
⑩
 <T> T uniqueMatch(final Class<T> ofType, final Predicate<T> predicate);
⑪

 <T> T firstMatch(Query<T> query);
⑫
 <T> T firstMatch(final Class<T> ofType, final Predicate<T> predicate);
⑬
}

① create a new non-persisted domain entity. This is identical to FactoryService's instantiate(…)

method, but is provided in the RepositoryService's API too because instantiating and persisting
objects are often done together.

② test whether a particular domain object is persistent or not

③ persist (ie save) an object to the persistent object store (or do nothing if it is already persistent).

④ persist (ie save) and flush; same as persist(), but also flushes changes to database and updates
managed properties and collections (i.e., 1-1, 1-n, m-n relationships automatically maintained by
the DataNucleus persistence mechanism).

⑤ remove (ie delete) an object from the persistent object store (or do nothing if it has already been
deleted).

⑥ remove (delete) and flush; same as remove(), but also flushes changes to database and updates
managed properties and collections (i.e., 1-1, 1-n, m-n relationships automatically maintained by

143

the DataNucleus persistence mechanism).

⑦ return all persisted instances of specified type. Mostly for prototyping, though can be useful to
obtain all instances of domain entities if the number is known to be small. The optional varargs
parameters are for paging control; more on this below.

⑧ all persistence instances matching the specified Query. Query itself is an Isis abstraction on top
of JDO/DataNucleus' Query API. This is the primary API used for querying

⑨ As the previous, but with client-side filtering using a Predicate. Only really intended for
prototyping.

⑩ Returns the first instance that matches the supplied query. If no instance is found then `null
`will be returned, while if there is more that one instances a run-time exception will be thrown.
Generally this method is preferred for looking up an object by its (primary or alternate) key.

⑪ As the previous, but with client-side filtering using a Predicate. Only really intended for
prototyping.

⑫ Returns the first instance that matches the supplied query. If no instance is found then null
`will be returned. No exception is thrown if more than one matches, so this is less strict

that `uniqueMatch(…).

⑬ As the previous, but with client-side filtering using a Predicate. Only really intended for
prototyping.

The uniqueMatch(…) methods are the recommended way of querying for (precisely) one instance.
The firstMatch(…) methods are for less strict querying.

10.4.2. Usage

This section briefly discusses how application code can use (some of) these APIs.

Persist

Customer cust = repositoryService.instantiate(Customer.class);
cust.setFirstName("Freddie");
cust.setLastName("Mercury");
repositoryService.persist(cust);

You should be aware that by default Apache Isis queues up calls to #persist() and #remove(). These
are then executed either when the request completes (and the transaction commits), or if the queue
is flushed. This can be done either implicitly by the framework, or as the result of a direct call to
#flush().

By default the framework itself will cause #flush() to be called whenever a query is executed by
way of #allMatches(Query), as documented above. However, this behaviour can be disabled using
the configuration property isis.services.container.disableAutoFlush.

144

rgcfg.pdf#_rgcfg_configuring-core

persistAndFlush(…), removeAndFlush(…)

In some cases, such as when using managed properties and collections for implementing 1-1, 1-n, or
m-n relationships, the developer needs to invoke flush() to send the changes to the DataNucleus
persistence mechanism. These managed properties and collections and then updated.

The persistAndFlush(…) and removeAndFlush(…) methods save the developer from having to
additionally call the flush(…) method after calling persist() or remove().

For example, the following code requires a flush to occur, so uses these methods:

public abstract class Warehouse extends SalesVIPEntity<Marketplace> {

 @Persistent(mappedBy = "marketplace", dependentElement = "true")
 @Getter @Setter ①
 private SortedSet<MarketplaceExcludedProduct> excludedProducts =
 new TreeSet<MarketplaceExcludedProduct>();

 @Action(semantics = SemanticsOf.IDEMPOTENT)
 public MarketplaceExcludedProduct addExcludedProduct(final Product product) {
 MarketplaceExcludedProduct marketplaceExcludedProduct = this
.findExcludedProduct(product);
 if (marketplaceExcludedProduct == null) {
 marketplaceExcludedProduct =
 this.factoryService.instantiate(MarketplaceExcludedProduct.class);
 }

 this.wrap(marketplaceExcludedProduct).setMarketplace(this);
 this.wrap(marketplaceExcludedProduct).setProduct(product);

 this.repositoryService.persistAndFlush(marketplaceExcludedProduct); ②
 return marketplaceExcludedProduct;
 }

 @Action(semantics = SemanticsOf.IDEMPOTENT)
 public void deleteFromExcludedProducts(final Product product) {
 final MarketplaceExcludedProduct marketplaceExcludedProduct =
findExcludedProduct(product);
 if (marketplaceExcludedProduct != null) {
 this.repositoryService.removeAndFlush(marketplaceExcludedProduct);
 }
 }
 ... ③
}

① using lombok for brevity

② Needed for updating the managed properties and collections.

③ injected services and other methods ommited

On the “addExcludedProduct()” action, if the user didn’t flush, the following test would fail because

145

the managed collection would not containing the given product:

@Test
public void addExcludedProduct() {

 // given
 final AmazonMarketplace amazonMarketplace = this.wrapSkipRules(
 this.marketplaceRepository).findOrCreateAmazonMarketplace(
 AmazonMarketplaceLocation.FRANCE);

 final Product product = this.wrap(this.productRepository)
 .createProduct(UUID.randomUUID().toString(), UUID.randomUUID().toString());

 // when
 this.wrap(amazonMarketplace).addExcludedProduct(product);

 // then
 Assertions.assertThat(
 this.wrapSkipRules(amazonMarketplace).findAllProductsExcluded()
).contains(product); ①
}

① this would fail.

Query and xxxMatches(…)

There are various implementations of the Query API, but these either duplicate functionality of the
other overloads of allMatches(…) or they are not supported by the JDO/DataNucleus object store.
The only significant implementation of Query to be aware of is QueryDefault, which identifies a
named query and a set of parameter/argument tuples.

For example, in the (non-ASF) Isis addons' todoapp the ToDoItem is annotated:

@javax.jdo.annotations.Queries({
 @javax.jdo.annotations.Query(
 name = "findByAtPathAndComplete", language = "JDOQL", ①
 value = "SELECT "
 + "FROM todoapp.dom.module.todoitem.ToDoItem "
 + "WHERE atPath.indexOf(:atPath) == 0 " ②
 + " && complete == :complete"), ③
 ...
})
public class ToDoItem ... {
 ...
}

① name of the query

② defines the atPath parameter

146

http://github.com/isisaddons/isis-app-todoapp

③ defines the complete parameter

This JDO query definitions are used in the ToDoItemRepositoryImplUsingJdoql service:

@DomainService(nature = NatureOfService.DOMAIN)
public class ToDoItemRepositoryImplUsingJdoql implements ToDoItemRepositoryImpl {
 @Programmatic
 public List<ToDoItem> findByAtPathAndCategory(final String atPath, final Category
category) {
 return container.allMatches(
 new QueryDefault<>(ToDoItem.class,
 "findByAtPathAndCategory", ①
 "atPath", atPath, ②
 "category", category)); ③
 }
 ...
 @javax.inject.Inject
 DomainObjectContainer container;
}

① corresponds to the "findByAtPathAndCategory" JDO named query

② provide argument for the atPath parameter. The pattern is parameter, argument, parameter,
argument, … and so on.

③ provide argument for the category parameter. The pattern is parameter, argument, parameter,
argument, … and so on.

Other JDOQL named queries (not shown) follow the exact same pattern.

With respect to the other query APIs, the varargs parameters are optional, but allow for (client-side
and managed) paging. The first parameter is the start (0-based, the second is the count.

It is also possible to query using DataNucleus' type-safe query API. For more
details, see IsisJdoSupport.

10.4.3. Implementation

The core framework provides a default implementation of this service
(o.a.i.core.metamodel.services.repository.RepositoryServiceDefault).

(Disabling) Auto-flush

Normally any queries are automatically preceded by flushing pending commands to persist or
remove objects.

This key allows this behaviour to be disabled.

147

 *
 * <p>
 * Originally introduced as part of ISIS-1134 (fixing memory leaks in the
objectstore)
 * where it was found that the autoflush behaviour was causing a (now
unrepeatable)
 * data integrity error (see <a href="https://issues.apache.org/jira/browse/ISIS-
1134?focusedCommentId=14500638&page=com.atlassian.jira.plugin.system.issuetabpanels:co
mment-tabpanel#comment-14500638">ISIS-1134 comment, in the isis-module-security.
 * However, that this could be circumvented by removing the call to flush().
 * We don't want to break existing apps that might rely on this behaviour, on the
 * other hand we want to fix the memory leak. Adding this configuration property
 * seems the most prudent way forward.
 * </p>
 */
public static final String KEY_DISABLE_AUTOFLUSH =
"isis.services.container.disableAutoFlush";

10.4.4. Registering the Service

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of RepositoryService
service is automatically registered and injected (it is annotated with @DomainService) so no further
configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

10.4.5. Related Services

the FactoryService is often used in conjunction with the RepositoryService, to instantiate domain
objects before persisting.

148

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

Chapter 11. Persistence Layer SPI
The persistence layer SPIs influence how the framework persists domain objects, for example
controlling how to create an audit log of changes to domain objects.

The table below summarizes the persistence layer SPIs defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 12. Persistence Layer SPI

SPI Description Implemen
tation

Notes

o.a.i.applib.
services.audit
AuditerService

Create an audit record for every changed
property of every changed object within a
transaction.

AuditerSer
viceLoggin
g
also
AuditerSer
viceUsingJ
do
o.ia.m.aud
it
isis-
module-
audit

o.a.i.applib.
services.audit
AuditingService3

(deprecated, replaced by AuditerService); creates
an audit record for every changed property of
every changed object within a transaction.

o.a.i.applib.
services.publish
EventSerializer

(deprecated, not used by replacement
PublisherService) Creates a representation of
either an action invocation or a changed object
being published through the PublishingService.

RestfulObj
ects-
SpecEventS
erializer
o.ia.m.pub
lishing
isis-
module-
publishing

o.a.i.applib.
services.publish
PublisherService

Publish any action invocations/property edits
and changed objects, typically for interchange
with an external system in a different bounded
context.

PublisherS
erviceLogg
ing
also
PublisherS
ervice-
UsingActiv
eMq
o.ia.m.pub
lishmq
isis-
module-
publishmq

149

http://www.isisaddons.org

SPI Description Implemen
tation

Notes

o.a.i.applib.
services.publish
PublishingService

(deprecated, replaced by PublisherService)
Publish any action invocations and changed
objects, typically for interchange with an
external system in a different bounded context.

Publishing
Service
o.ia.m.pub
lishing
isis-
module-
publishing

o.a.i.applib.
services.userreg
UserRegistrationServic
e

Create a new user account with the configured
security mechanism.

SecurityMo
dule-
AppUserReg
istrationS
ervice
o.ia.m.sec
urity
isis-
module-
security

depends
(implicitly)
on:
a
configured
EmailServi
ce

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

Where an implementation is available (on the classpath) then it is always registered automatically
(that is, they are all (with one exception) annotated with @DomainService.

11.1. AuditerService
The AuditerService auditing service provides a simple mechanism to capture changes to data. It is
called for each property that has changed on any domain object, as a set of pre- and post-values.

This service is intended to replace the now-deprecated AuditingService3. The
difference between the two is that this service recognises that the transactionId is
now (as of 1.13.0) actually a request/interaction Id, and that an additional
`sequence

11.1.1. SPI

The SPI for the service is:

150

rgant.pdf#_rgant-DomainService

public interface AuditerService {
 boolean isEnabled(); ①
 public void audit(
 UUID transactionId, int sequence, ②
 String targetClassName,
 Bookmark target, ③
 String memberIdentifier,
 String propertyName, ④
 String preValue, String postValue, ⑤
 String user, java.sql.Timestamp timestamp); ⑥
 }

① whether this implementation is enabled. If all configured implementations are disabled, then
auditing is suppressed (a minor performance optimization).

② together the transactionId (misnamed; really is the request/interaction Id) and the sequence
uniquely identify the transaction in which the object was changed.

③ identifies the object that has changed

④ the property of the object that has changed. The combination of the transactionId, sequence,
target and propertyName is unique.

⑤ the before and after values of the property (in string format). If the object was created then
"[NEW]" is used as the pre-value; if the object was deleted then "[DELETED]" is used as the post-
value.

⑥ the user that changed the object, and the date/time that this occurred.

The framework will call this for each and every domain object property that is modified within a
transaction.

11.1.2. Implementations

The framework allows multiple implementations of this service to be registered; all will be called.
The framework provides one implementation of its own, AuditerServiceLogging (in
o.a.i.applib.services.audit package); this logs simple messages to an SLF4J logger.

For example, this can be configured to write to a separate log file by adding the following to
logging.properties:

log4j.appender.AuditerServiceLogging=org.apache.log4j.FileAppender
log4j.appender.AuditerServiceLogging.File=./logs/AuditerServiceLogging.log
log4j.appender.AuditerServiceLogging.Append=false
log4j.appender.AuditerServiceLogging.layout=org.apache.log4j.PatternLayout
log4j.appender.AuditerServiceLogging.layout.ConversionPattern=%d{yyyy-MM-dd
HH:mm:ss.SSS} %m%n

log4j.logger.org.apache.isis.applib.services.audit.AuditerServiceLogging=DEBUG,Auditer
ServiceLogging
log4j.additivity.org.apache.isis.applib.services.audit.AuditerServiceLogging=false

151

The (non-ASF) Isis addons' Audit module also provides an implementation,
org.isisaddons.module.audit.dom.AuditerServiceUsingJdo. This creates an audit record for each
changed property (ie every time that AuditerService#audit(…) is called.

The module also provides:

• AuditingServiceMenu service which provides actions to search for AuditEntrys, underneath an
'Activity' menu on the secondary menu bar.

• AuditingServiceRepository service to to search for persisted AuditEntry``s. None of its

actions are visible in the user interface (they are all `@Programmatic).

• AuditingServiceContributions which contrbutes collections to the HasTransactionId interface.
This will therefore display all audit entries that occurred in a given request/transaction, in other
words whenever a command, a published event or another audit entry is displayed.

11.1.3. Usage

The typical way to indicate that an object should be audited is to annotate it with the
@DomainObject#auditing() annotation.

11.1.4. Registering the Services

The (non-ASF) Isis addons' audit module provides an implementation of this service (
AuditerService), and also provides a number of related domain services (AuditingServiceMenu,
AuditingServiceRepository and AuditingServiceContributions).

Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

If menu items or contributions are not required in the UI, these can be suppressed either using
security or by implementing a vetoing subscriber.

11.1.5. Related Services

The auditing service works very well with implementations of <code>PublisherService</code> that persist the
<code>Interaction.Execution</code> objects obtained from the <code>InteractionContext</code> service. The
interaction execution captures the _cause of an interaction (an action was invoked, a
property was edited), while the <code>AuditerService</code> audit entries capture the
effect of that interaction in terms of changed state.

Prior to <code>1.13.0</code> the <code>CommandService</code>
performed a similar role, of capturing the cause. As of <code>1.13.0</code>,
<code>Command</code>s are now primarily to capture the _intent of an
action, not the actual action invocation itself.

The AuditerService is intended to replace the (now-deprecated) AuditingService3, as the latter does

152

http://github.com/isisaddons/isis-module-audit
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId
rgant.pdf#_rgant-DomainObject_auditing
http://github.com/isisaddons/isis-module-audit
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility

not support the concept of multiple transactions within a single interaction.

11.2. AuditingService3 (deprecated)
The AuditingService3 auditing service provides a simple mechanism to capture changes to data. It is
called for each property that has changed on any domain object, as a set of pre- and post-values.

 This service is deprecated, replaced by AuditerService.

11.2.1. SPI

The SPI for the service is:

public interface AuditingService3 {

 @Programmatic
 public void audit(
 final UUID transactionId, String targetClassName, final Bookmark target,
 String memberIdentifier, final String propertyName,
 final String preValue, final String postValue,
 final String user, final java.sql.Timestamp timestamp);
 }

The framework will call this for each and every domain object property that is modified within a
transaction.

11.2.2. Implementation

The most full-featured available implementation is the (non-ASF) Isis addons' Audit module. This
creates an audit records for each changed property (ie every time that AuditingService3#audit(…)

is called. The implementation is org.isisaddons.module.audit.dom.AuditingService.

The module also provides:

• AuditingServiceMenu service which provides actions to search for AuditEntrys, underneath an
'Activity' menu on the secondary menu bar.

• AuditingServiceRepository service to to search for persisted AuditEntry``s. None of its

actions are visible in the user interface (they are all `@Programmatic).

• AuditingServiceContributions which contrbutes collections to the HasTransactionId interface.
This will therefore display all audit entries that occurred in a given transaction, in other words
whenever a command, a published event or another audit entry is displayed.

If you just want to debug (writing to stderr), you can instead configure
o.a.i.applib.services.audit.AuditingService3$Stderr

153

http://github.com/isisaddons/isis-module-audit
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId

11.2.3. Usage

The typical way to indicate that an object should be audited is to annotate it with the
@DomainObject#auditing() annotation.

11.2.4. Registering the Services

The (non-ASF) Isis addons' audit module provides an implementation of this service
(AuditingService), and also provides a number of related domain services (AuditingServiceMenu,
AuditingServiceRepository and AuditingServiceContributions).

Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

If menu items or contributions are not required in the UI, these can be suppressed either using
security or by implementing a vetoing subscriber.

11.2.5. Related Services

This service has been deprecated and replaced by the equivalent AuditerService.

11.3. EventSerializer (deprecated)
The EmailSerializer service is a supporting service intended for use by (any implementation of)
PublishingService. Its responsibility is to combine the EventMetadata and the EventPayload into some
serialized form (such as JSON, XML or a string) that can then be published.

 This service is deprecated, replaced with PublisherService.

See PublishingService for further discussion.

11.3.1. SPI

The SPI defined by this service is:

@Deprecated
public interface EventSerializer {
 Object serialize(①
 EventMetadata metadata, ②
 EventPayload payload); ③
}

① returns an object for maximum flexibility, which is then handed off to the PublishingService.

② standard metadata about the event, such as the user, the transactionId, date/time etc

③ for published actions, will generally be an EventPayloadForActionInvocation (or subclass
thereof); for published objects, will generally be an EventPayloadForObjectChanged (or subclass
thereof)

154

rgant.pdf#_rgant-DomainObject_auditing
http://github.com/isisaddons/isis-module-audit
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility
rgcms.pdf#_rgcms_classes_mixins_HasTransactionId

It’s important to make sure that the publishing service implementation is able to handle the
serialized form. Strings are a good lowest common denominator, but in some cases a type-safe
equivalent, such as a w3c DOM Document or JSON node might be passed instead.

11.3.2. Implementation

The (non-ASF) Isis addons' publishing module provides an implementation
(org.isisaddons.module.publishing.dom.eventserializer.RestfulObjectsSpecEventSerializer) that
represents the event payload using the representation defined by the Restful Objects spec of
(transient) objects, grafting on the metadata as additional JSON nodes.

For example, this is the JSON generated on an action invocation:

Figure 1. JSON representation of a published action invocation

while this is the object change JSON:

155

http://github.com/isisaddons/isis-module-publishing
http://restfulobjects.org
images/reference-services-spi/EventSerializer/action-invocation-published-to-stderr.png

Figure 2. JSON representation of a published changed object

You could if you wish change the representation by registering your own implementation of this
API in isis.properties:

11.3.3. Registering the Services

There is no default implementation of this service provided by the core Apache Isis framework.

The (non-ASF) Isis addons' publishing module provides an implementation of this service
(RestfulObjectsSpecEventSerializer) that serializes action invocations and published objects into a
format based on the Restful Objects specification. It also (as you might imagine) provides an
implementation of the PublishingService.

Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

11.3.4. Related Services

This service is intended (though not mandated) to be used by implementations of
PublishingService. The (non-ASF) Isis addons' publishing module does use it (though the (non-ASF)
Isis addons' publishmq module does not).

11.4. PublisherService
The PublisherService API is intended for coarse-grained publish/subscribe for system-to-system
interactions, from Apache Isis to some other system. Events that can be published are action

156

images/reference-services-spi/EventSerializer/changed-object-published-to-stderr.png
http://github.com/isisaddons/isis-module-publishing
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
http://github.com/isisaddons/isis-module-publishing
http://github.com/isisaddons/isis-module-publishmq

invocations/property edits, and changed objects. A typical use case is to publish onto a pub/sub bus
such as ActiveMQ with Camel to keep other systems up to date.

An alternative use is for profiling: for each execution (action invocation/property edit) the
framework captures metrics of the number of objects loaded or dirtied as the result of that
execution. If the WrapperFactory is used to call other objects then the metrics are captured for each
sub-execution. The framework provides a default implementation, PublisherServiceLogging, that
will log these execution graphs (in XML form, per the "ixn" schema) to an SLF4J logger.

Only actions/properties/domain objects annotated for publishing (using @Action#publishing(),
@Property#publishing() or @DomainObject#publishing()) are published.

11.4.1. SPI

The SPI defined by the service is:

public interface PublisherService {
 void publish(final Interaction.Execution<?, ?> execution); ①
 void publish(final PublishedObjects publishedObjects); ②
}

① to publish an individual action invocation or property edit, as captured within an
Interaction.Execution.

② to publish a set of changed objects.

Each Interaction.Execution has an owning Interaction; this is the same object obtainable from
InteractionContext. Implementations that publish member executions can use
Interaction.Execution#getDto() method to return a DTO (as per the "ixn" schema) which can be
converted into a serializable XML representation using the InteractionDtoUtils utility class. The
XML can either serialize a single execution, or can be a "deep" serialization of an execution and all
sub-executions.

The full API of PublishedObjects itself is:

public interface PublishedObjects extends HasTransactionId, HasUsername {
 UUID getTransactionId(); ①
 String getUsername(); ②
 Timestamp getCompletedAt(); ③
 ChangesDto getDto(); ④

 int getNumberLoaded(); ⑤
 int getNumberCreated();
 int getNumberUpdated();
 int getNumberDeleted();
 int getNumberPropertiesModified();
}

① inherited from HasTransactionId, correlates back to the unique identifier of the transaction in

157

http://activemq.apache.org/
http://camel.apache.org
rgcms.pdf#_rgcms_schema-ixn
rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-Property_publishing
rgant.pdf#_rgant-DomainObject_publishing
rgcms.pdf#_rgcms_schema-ixn

which these objects were changed.

② inherited from HasUsername, is the user that initiated the transaction causing these objects to
change

③ the time that this set of objects was collated (just before the completion of the transaction
completes)..

④ returns a DTO (as per the "chg" schema) which can be converted into a serializable XML
representation can be obtained using the ChangesDtoUtils utility class.

⑤ metrics as to the number of objects loaded, created, updated or deleted and the number of
object properties modified (in other words the "size" or "weight" of the transaction).

11.4.2. Implementations

The framework allows multiple implementations of this service to be registered; all will be called.
The framework provides one implementation of its own, PublisherServiceLogging (in
o.a.i.applib.services.publish package); this logs "deep" serializations to an SLF4J logger.

For example, this can be configured to write to a separate log file by adding the following to
logging.properties:

log4j.appender.PublisherServiceLogging=org.apache.log4j.FileAppender
log4j.appender.PublisherServiceLogging.File=./logs/PublisherServiceLogging.log
log4j.appender.PublisherServiceLogging.Append=false
log4j.appender.PublisherServiceLogging.layout=org.apache.log4j.PatternLayout
log4j.appender.PublisherServiceLogging.layout.ConversionPattern=%d{yyyy-MM-dd
HH:mm:ss.SSS} %m%n

log4j.logger.org.apache.isis.applib.services.publish.PublisherServiceLogging=DEBUG,Pub
lisherServiceLogging
log4j.additivity.org.apache.isis.applib.services.publish.PublisherServiceLogging=false

The (non-ASF) Isis addons' publishmq module also provides an implementation
(o.ia.m.publishmq.dom.servicespi.PublishingServiceUsingActiveMq). This implementation publishes
each member execution as an event on an ActiveMQ message queue. It also persists each execution
as a PublishedEvent entity, allowing the event to be republished if necessary. The implementation
also provides the ability to log additional StatusMessage entities, correlated on the transactionId,
useful for diagnosing and monitoring the activity of subscribers of said message queues.

11.4.3. Usage

To indicate that an action invocation should be published, annotate it with the @Action#publishing()
annotation.

To indicate that an property edit should be published, annotate it with the @Property#publishing()
annotation.

To indicate that a changed object should be published is to annotate it with the
@DomainObject#publishing() annotation.

158

rgcms.pdf#_rgcms_schema-chg
http://github.com/isisaddons/isis-module-publishmq
http://activemq.apache.org
rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-Property_publishing
rgant.pdf#_rgant-DomainObject_publishing

11.4.4. Registering the Services

The (non-ASF) Isis addons' publishmq module provides an implementation of this service.
Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

The module also provide services that contribute to the UI. If contributions are not required in the
UI, these can be suppressed either using security or by implementing a vetoing subscriber.

11.4.5. Related Services

This service supports two main use cases:

• coarse-grained publish/subscribe for system-to-system interactions, from Apache Isis to some
other system.

The PublishingService also supports this use case, but is deprecated: the
PublisherService is intended as a replacement for PublishingService.

• profiling of interactions/transactions, eg to diagnose response/throughput issues.

To support these use cases several other services are involved:

• the InteractionContext is used to obtain the Interaction from which the member executions are
published.

• the (internal) ChangedObjectsServiceInternal domain service is used to obtain the set of objects
modified throughout the transaction

• the (internal) PublisherServiceInternal domain service filters these down to those changed
objects that are also published (as per @DomainObject#publishing()) and delegates to the
PublisherService.

• the MetricsService is used to obtain the objects that are loaded throughout the transaction; this
info is used in order to instantiate the PublishedObjects object passed through to the
PublisherService.

The EventBusService differs from the PublisherService in that it is intended for fine-grained
publish/subscribe for object-to-object interactions within an Apache Isis domain object model. The
event propagation is strictly in-memory, and there are no restrictions on the object acting as the
event; it need not be serializable, for example. That said, it is possible to obtain a serialization of
the action invocation/property edit causing the current event to be raised using InteractionContext
domain service.

11.5. PublishingService (deprecated)
The PublishingService API is intended for coarse-grained publish/subscribe for system-to-system
interactions, from Apache Isis to some other system. Here the only events published are those that
action invocations and of changed objects. A typical use case is to publish onto a pub/sub bus such
as ActiveMQ with Camel to keep other systems up to date.

159

http://github.com/isisaddons/isis-module-publishmq
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility
rgfis.pdf#_rgfis_spi_ChangedObjectsServiceInternal
rgfis.pdf#_rgfis_spi_PublisherServiceInternal
rgant.pdf#_rgant-DomainObject_publishing
http://activemq.apache.org/
http://camel.apache.org

 As of 1.13.0 this service is deprecated, replaced with PublisherService.

11.5.1. SPI

The SPI defined by the service is:

@Deprecated
public interface PublishingService {
 public void publish(
 EventMetadata metadata, ①
 EventPayload payload); ②
 void setEventSerializer(EventSerializer eventSerializer); ③
}

① standard metadata about the event, such as the user, the transactionId, date/time etc

② for published actions, an EventPayloadForActionInvocation (or subclass thereof); for published
objects, an EventPayloadForObjectChanged (or subclass thereof)

③ injects in the EventSerializer service. This is deprecated because not every implementation is
required to use an EventSerializer so its inclusion within the SPI of PublishingService was in
retrospect a mistake.

Typically implementations will use the injected EventSerializer to convert the metadata and
payload into a form to be published:

public interface EventSerializer {
 public Object serialize(EventMetadata metadata, EventPayload payload);
}

The serialized form returned by EventSerializer must be in a form that the PublishingService
implementation is able to handle. Strings are a good lowest common denominator, but (if custom
implementations of both EventSerializer and PublishingService were in use) then it might also be
some other type, for example an org.w3c.dom.Document or an org.json.JSONObject might be returned
instead.

11.5.2. Implementation

The (non-ASF) Isis addons' publishing module provides an implementation
(org.isisaddons.module.publishing.dom.PublishingService) that persists each event as a
PublishedEvent entity. This holds the serialized form of the event metadata and payload as
translated into a string by the injected EventSerializer. The module also provides its own
implementation of EventSerializer, namely RestfulObjectsSpecEventSerializer, which represents
the event payload using the representation defined by the Restful Objects spec of (transient) objects,
grafting on the metadata as additional JSON nodes.

The PublishedEvent entity also has a state field taking the values either "QUEUED" or "PROCESSED".
The intention here is that an event bus can poll this table to grab pending events and dispatch them

160

rgcms.pdf#_rgcms_classes_mixins_HasTransactionId
http://github.com/isisaddons/isis-module-publishing
http://restfulobjects.org

to downstream systems. When PublishedEvents are persisted initially they always take the value
"QUEUED".

The framework provides no default implementations of this service.

11.5.3. Usage

To indicate that an action invocation should be published, annotate it with the @Action#publishing()
annotation.

To indicate that a changed object should be published is to annotate it with the
@DomainObject#publishing() annotation.

It is also possible to "fine-tune" the EventPayload using the #publishingFactory() attribute (for both
annotations). By default the EventPayload that is serialized identifies the object(s) being interacted
with or changed, and in the case of the action invocation provides details of the action arguments
and result (if any) of that action. However, the payload does not (by default) include any
information about the new state of these objects. It is therefore the responsibility of the subscriber
to call back to Apache Isis to determine any information that has not been published.

The replacement PublisherService does not support the concept of "payload
factories" (but is otherwise more flexible).

Although the representations (if using the Restful Object serializer and Restful Objects viewer) does
include hrefs for the objects, this nevertheless requires an additional network call to obtain this
information).

In some circumstances, then, it may make more sense to eagerly "push" information about the
change to the subscriber by including that state within the payload.

To accomplish this, an implementation of a “PayloadFactory” must be specified in the annotation.

For actions, we implement the PublishingPayloadFactoryForAction (in o.a.i.applib.annotation):

@Deprecated
public interface PublishingPayloadFactoryForAction {
 public EventPayload payloadFor(
 Identifier actionIdentifier,
 Object target,
 List<Object> arguments,
 Object result);
}
}

The EventPayloadForActionInvocation abstract class (in the Isis applib) should be used as the base
class for the object instance returned from payLoadFor(…).

For objects, the interface to implement is PublishingPayloadFactoryForObject:

161

rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-DomainObject_publishing

@Deprecated
public interface PublishingPayloadFactoryForObject {
 public EventPayload payloadFor(
 Object changedObject,
 PublishingChangeKind publishingChangeKind); ①
}

① an enum taking the values CREATE, UPDATE, DELETE

Similarly, the EventPayloadForObjectChanged abstract class should be used as the base class for the
object returned from payLoadFor(…).

For example, the following will eagerly include a ToDoItem’s `description property whenever it is
changed:

@DomainObject(publishingPayloadFactory=ToDoItemPayloadFactory.class)
public class ToDoItem {
 ...
}

where ToDoItemPayloadFactory is defined as:

public class ToDoItemChangedPayloadFactory implements
PublishingPayloadFactoryForObject {
 public static class ToDoItemPayload
 extends EventPayloadForObjectChanged<ToDoItem> {
 public ToDoItemPayload(ToDoItem changed) { super(changed); }
 public String getDescription() { return getChanged().getDescription(); }
 }
 @Override
 public EventPayload payloadFor(Object changedObject, PublishingChangeKind kind) {
 return new ToDoItemPayload((ToDoItem) changedObject);
 }
}

11.5.4. Registering the Services

There is no default implementation of this service provided by the core Apache Isis framework.

The (non-ASF) Isis addons' publishing module provides an implementation of this service.
Assuming that an AppManifest is being used to bootstrap the app) then this can be activated by
updating the pom.xml and updating the AppManifest#getModules() method.

The module also provides services that contribute to the UI. If contributions are not required in the
UI, these can be suppressed either using security or by implementing a vetoing subscriber.

162

http://github.com/isisaddons/isis-module-publishing
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugbtb.pdf#_ugbtb_decoupling_vetoing-visibility

11.5.5. Related Services

The PublishingService is intended for coarse-grained publish/subscribe for system-to-system
interactions, from Apache Isis to some other system. Here the only events published are those that
action invocations (for actions annotated with @Action#publishing()) and of changed objects (for
objects annotated with @DomainObject#publishing().

The PublisherService is intended as a replacement for this service. The use case for
PublisherService is the same: coarse-grained publishing of events for system-to-system interactions.
It is in most respects more flexible though: events are published both for action invocations
(annotated with @Action#publishing()) and also for property edits (annotated with
@Property#publishing(). It also publishes changed objects (for objects annotated with
@DomainObject#publishing()). However, rather than publishing one event for every changed objects,
it publishes a single event that identifies all objects created, updated or deleted.

Another significant difference between PublishingService and PublisherService is in the content of
the events themselves. While the former uses the MementoService to create an ad-hoc serialization
of the action being invoked, the latter uses the DTOs/XML schemas as a formal specification of the
nature of the interaction (action invocation, property edit or changed objects).

The EventBusService meanwhile differs from both PublishingService and PublisherService in that it
is intended for fine-grained publish/subscribe for object-to-object interactions within an Apache Isis
domain object model. The event propagation is strictly in-memory, and there are no restrictions on
the object acting as the event; it need not be serializable, for example. (That said, it is possible to
obtain a serialization of the action invocation/property edit causing the current event to be raised
using InteractionContext domain service).

11.5.6. Design Notes

The following class diagram shows how the above components fit together:

163

rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-DomainObject_publishing
rgant.pdf#_rgant-Action_publishing
rgant.pdf#_rgant-Property_publishing
rgant.pdf#_rgant-DomainObject_publishing
rgcms.pdf#_rgcms_schema

This yuml.me diagram was generated at yuml.me.

11.6. UserRegistrationService
The UserRegistrationService provides the ability for users to sign-up to access an application by
providing a valid email address, and also provides the capability for users to reset their password if
forgotten.

For user sign-up, the Wicket viewer will check whether an implementation
of this service (and also the <code>EmailNotificationService</code>) is
available, and if so will render a sign-up page where the user enters their email address. A
verification email is sent (using the aforementioned <code>EmailNotificationService</code>) which
includes a link back to the running application; this allows the user then to complete their
registration process (choose user name, password and so on). When the user has provided the
additional details, the Wicket viewer calls _this service in order to create an account for them,
and then logs the user on.

For the password reset feature, the Wicket viewer will render a password reset page, and use the
EmailNotificationService to send a "password forgotten" email. This service provides the ability to
reset a password based on the user’s email address.

It is of course possible for domain objects to use this service; it will be injected into domain object
or other domain services in the usual way. That said, we expect that such use cases will be
comparatively rare; the primary use case is for the Wicket viewer’s sign-up page.

164

images/reference-services-spi/PublishingService/yuml.me-23db58a4.png
http://yuml.me/edit/23db58a4

For further details on the user registration feature (as supported by the Wicket
viewer), see here.

11.6.1. SPI

The SPI defined by the service is:

public interface UserRegistrationService {
 @Programmatic
 boolean usernameExists(String username); ①
 @Programmatic
 boolean emailExists(String emailAddress); ②
 @Programmatic
 void registerUser(String username, String password, String emailAddress); ③
 @Programmatic
 boolean updatePasswordByEmail(String emailAddress, String password); ④
}

① checks if there is already a user with the specified username

② checks if there is already a user with the specified email address

③ creates the user, with specified password and email address. The username and email address
must both be unique (not being used by an existing user)

④ allows the user to reset their password

11.6.2. Implementation

The core Apache Isis framework itself defines only an API; there is no default implementation.
Rather, the implementation will depend on the security mechanism being used.

That said, if you have configured your app to use the Isis addons security module, then note that
the security module does provide an abstract implementation
(SecurityModuleAppUserRegistrationServiceAbstract) of the UserRegistrationService. You will need
to extend that service and provide implementation for the two abstract methods: getInitialRole()
and getAdditionalInitialRoles().

This is needed so that the self-registered users are assigned automatically to your application role(s)
and be able to use the application. Without any role such user will be able only to see/use the logout
link of the application.

11.6.3. Registering the Services

There is no default implementation of this service provided by the core Apache Isis framework.

If using the (non-ASF) Isis addons' security module) for authentication and authorization, then note
that it provides an adapter class, SecurityModuleAppUserRegistrationServiceAbstract, that provides
most of the implementation. You are still required to implement a subclass and register.

165

ugvw.pdf#_ugvw_features_user-registration
http://github.com/isisaddons/isis-module-security
http://github.com/isisaddons/isis-module-security

For example:

@DomainService(nature=NatureOfService.DOMAIN)
public class AppUserRegistrationService extends
SecurityModuleAppUserRegistrationServiceAbstract {
 protected ApplicationRole getInitialRole() {
 return findRole("regular-user");
 }
 protected Set<ApplicationRole> getAdditionalInitialRoles() {
 return Collections.singleton(findRole("self-registered-user"));
 }
 private ApplicationRole findRole(final String roleName) {
 return applicationRoles.findRoleByName(roleName);
 }
 @Inject
 private ApplicationRoles applicationRoles;
}

11.6.4. Related Services

The most common use case is to allow users to sign-up through Apache Isis' Wicket viewer. Because
the process requires email to be sent, the following services must be configured:

• EmailService

• EmailNotificationService

• UserRegistrationService (this service)

The EmailService in particular requires additional configuration properties to specify the external
SMTP service.

166

rgcfg.pdf#_rgcfg_configuring-core

Chapter 12. Bootstrapping SPI
Bootstrapping SPIs influence how the framework locates the components that make up the running
application.

The table below summarizes the bootstrapping SPI defined by Apache Isis. It also lists their
corresponding implementation, either a default implementation provided by Apache Isis itself, or
provided by one of the in (non-ASF) Isis Addons modules.

Table 13. Bootstrapping SPI

SPI Description Implemen
tation

Notes

o.a.i.applib.
services.classdiscover
y
ClassDiscoveryService

Mechanism to locate (from the classpath) classes
with a specific annotation (eg @DomainService)
Subtypes of a given type (eg FixtureScript).

ClassDisco
veryServic
e-
UsingRefle
ctions
o.a.i.core
isis-core-
applib

requires
org.reflec
tions:refl
ections as
Maven
dependenc
y

Key:

• o.a.i is an abbreviation for org.apache.isis

• o.ia.m is an abbreviation for org.isisaddons.module

• o.a.i.c.m.s is an abbreviation for org.apache.isis.core.metamodel.services

• o.a.i.c.r.s is an abbreviation for org.apache.isis.core.runtime.services

12.1. ClassDiscoveryService
The ClassDiscovery service is used to automatically discover subclasses of any given type on the
classpath. The primary use case is to support "convention-over-configuration" designs that work
with a minimum of configuration.

This service is used by the FixtureScripts service to automatically locate any FixtureScript
implementations.

12.1.1. SPI

The SPI defined by the service is:

167

http://www.isisaddons.org
rgant.pdf#_rgant-DomainService
rgcms.pdf#_rgcms_classes_super_FixtureScript
rgcms.pdf#_rgcms_classes_super_FixtureScripts
rgcms.pdf#_rgcms_classes_super_FixtureScript

public interface ClassDiscoveryService2 {
 @Programmatic
 <T> Set<Class<? extends T>> findSubTypesOfClasses(Class<T> type, String
packagePrefix);
 @Deprecated
 @Programmatic
 <T> Set<Class<? extends T>> findSubTypesOfClasses(Class<T> type); ①
}

① no longer used

12.1.2. Implementation

Isis provides an implementation of this service, namely
o.a.i.applib.services.classdiscovery.ClassDiscoveryServiceUsingReflections.

This implementation is also used to discover domain services annotated with
@DomainService. Currently this logic uses the implementation directly, so is not
pluggable. However, the entire ServicesInstaller

12.1.3. Usage

The usage will vary depending upon the conventions of the design. As of 1.9.0, the usage of the
service has been centralized such that the packages to be scanned are located from the
AppManifest's #getModules() method.

For example, the SimpleApp archetype's app manifest includes:

public class DomainAppAppManifest implements AppManifest {
 @Override
 public List<Class<?>> getModules() {
 return Arrays.asList(
 DomainAppDomainModule.class, // domain (entities and repositories)
 DomainAppFixtureModule.class, // fixtures
 DomainAppAppModule.class // home page service etc
);
 }
 ...
}

where the three module classes in effect define three different package prefixes to search under
(for domain services, fixture scripts and persistent entities).

Other usages of the ClassDiscoveryService are likely to work in a similar way, requiring some sort of
scope to be specified.

168

rgant.pdf#_rgant-DomainService
rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
ugfun.pdf#_ugfun_getting-started_simpleapp-archetype

12.1.4. Registering the Services

Assuming that the configuration-and-annotation services installer is configured (implicit if using
the AppManifest to bootstrap the app) then Apache Isis' core implementation of
ClassDiscoveryService2 service is automatically registered and injected (it is annotated with
@DomainService) so no further configuration is required.

To use an alternative implementation, use @DomainServiceLayout#menuOrder() (as explained in the
introduction to this guide).

169

rgcms.pdf#_rgcms_classes_AppManifest-bootstrapping
rgant.pdf#_rgant-DomainServiceLayout_menuOrder

	Domain Services
	Table of Contents
	Chapter 1. Domain Services
	1.1. Other Guides

	Chapter 2. Introduction
	2.1. Types of Domain Service
	2.2. Public API vs Internal Services
	2.3. Using the services
	2.4. Overriding the services
	2.5. Command and Events

	Chapter 3. Presentation Layer SPI
	3.1. ContentMappingService
	3.2. EmailNotificationService
	3.3. ErrorReportingService
	3.4. ExceptionRecognizer
	3.5. GridSystemService
	3.6. GridLoaderService
	3.7. GridService
	3.8. HintStore
	3.9. LocaleProvider
	3.10. RoutingService
	3.11. TableColumnOrderService
	3.12. TranslationService
	3.13. TranslationsResolver
	3.14. UrlEncodingService
	3.15. UserProfileService

	Chapter 4. Application Layer API
	4.1. AcceptHeaderService
	4.2. ActionInvocationContext
	4.3. BackgroundService2
	4.4. CommandContext
	4.5. InteractionContext
	4.6. MessageService
	4.7. SessionManagementService
	4.8. TitleService
	4.9. TransactionService
	4.10. WrapperFactory

	Chapter 5. Application Layer SPI
	5.1. BackgroundCommandService
	5.2. CommandService
	5.3. HomePageProviderService

	Chapter 6. Core/Domain API
	6.1. ClockService
	6.2. ConfigurationService
	6.3. DomainObjectContainer
	6.4. EventBusService
	6.5. FactoryService
	6.6. Scratchpad
	6.7. UserService

	Chapter 7. Integration API
	7.1. BookmarkService2
	7.2. DeepLinkService
	7.3. EmailService
	7.4. GuiceBeanProvider
	7.5. JaxbService
	7.6. MementoService (deprecated)
	7.7. XmlSnapshotService

	Chapter 8. Metadata API
	8.1. ApplicationFeatureRepository
	8.2. LayoutService
	8.3. MetaModelService3
	8.4. ServiceRegistry2
	8.5. SwaggerService

	Chapter 9. Testing
	9.1. ExecutionParametersService
	9.2. FixtureScriptsDefault
	9.3. FixtureScriptsSpec’nProvider
	9.4. SudoService
	9.5. SwitchUserService (deprecated)

	Chapter 10. Persistence Layer API
	10.1. IsisJdoSupport
	10.2. MetricsService
	10.3. QueryResultsCache
	10.4. RepositoryService

	Chapter 11. Persistence Layer SPI
	11.1. AuditerService
	11.2. AuditingService3 (deprecated)
	11.3. EventSerializer (deprecated)
	11.4. PublisherService
	11.5. PublishingService (deprecated)
	11.6. UserRegistrationService

	Chapter 12. Bootstrapping SPI
	12.1. ClassDiscoveryService

