Annotations

Table of Contents

RN D o U 1) o3P 1
L1 Other GUIAES . .ottt ettt e et et e et et et e e e e e 1
12, EXAINPIES .. 1

2 SUIMIMIATY v vttt ettt ettt ettt et et e ettt e e e 3
2.1, COTe ANNOTAIONS . .ttt ettt ittt et et et e e et et e e e e e 3
2.2. Other ISiS ANNOTAtIONS ...\ttt e ettt et et et et i ie et e iaeeans 4
2.3. DO ANNOTATIONS .+« o v vttt ettt ettt ettt ettt et e 4
2.4.Java EE ANNOtAtIONSuut ittt e 6
2.5. Deprecated ANNOTATIONS . . . oottt ettt e 6
2.6. Incomplete/partial SUPPOTtttt e 12

1 TR Yol o o P 15
3.1, aSS0CTat TN () . vttt e e e e 17
3.2. Command Persistence and Processingttt 18
3.3.domMaINEVENT() ..ottt ittt e e e e e 23
R 70 1[4 LT G PP 27
0T T 1170110 1 S 27
3.6, PUDLTSNTNG() e ettt ettt ettt e e 28
0T AR =13 of oA o I 10 29
3.8 SBMANTTCS () ettt ettt e e e e e e e 30
3.0 EYPEOT () v ettt e e e e e e e e e 32

4. BACTTONLaYOUL ..ttt e 33
4.1, DOOKMATKING () e v ottt ettt et et e e e e e e e e e 34
4.2, CoNtribULEAAS) vttt e e e 36
4.3, CSSCLaSS () vttt e e e 37
A, CSSCLaSSFal() et vttt e e e e 37
4.5, desCribeAAS).t ittt e 38
4.6, NTAAEN () vttt ettt e e e e e e e e e 39
A7, NAMEA() vttt e e e e 40
A 8. POSTEION () vttt ittt e e e e e e e 40

TR L0 1 B Y o3 PP 43
Lo 1 = a =R VZ=Y 1o S 44
5.2, RATEING() ettt ettt et et e e e e e e e 47
5.3 NN () vttt e e e e e e e 48
Lo o Xl Y s S o =V £ 49
DD PO () vt ettt e e e e e e e e 50

6. C0OLLeCtioNLayoUt ..ot 51
6.1, CSSCLASS () vttt ettt e e e e e e 52

6.2, e AU Lt T) e vttt ettt e e e e e e e e e e e 53

B.3. dESCTIDRAAS () e vttt ettt e e e e e e 53

6.4, NTAAEN () vttt e e 54
6.5, NMAMEA()+ vttt ettt e e e e 55
8.6, PAGEA() + vttt et e e e e 56
8.7 TONART () vttt et et e e e e 57
B.8. SOTTRABY () '+ttt ittt ettt e 57
7. BCOTUMN (JAVAX. JA0) .« e ettt ettt e e e e e e e e e e e 60
7L NUADILEY ..ot e e 60
7.2. Length fOr STrings ... e 60
7.3. Length/scale for BigDecimalsttt et et e 61
74 HINES @0 TIPS .« v vttt ettt ettt e e et e e ettt e e e 61
7.5. Mapping BLobs and CLobSottt e e e 62
8. DTS (JAVAX) « v ettt ittt ettt e e e e e 64
9. @DISCriminNator (JaVaX. JA0) . oo vttt et et et e e e e 65
0. L. E XA PLES .ottt e 65
0.2, PrECeABIICE.ttt ettt e e e 65
10. @DOMATNODJ OOt ettt ettt e 67
101, AUATEING() vttt ittt et e e e e e 69
10.2. autoCompleteRePOSTEOrY () . v vt e e e et et e e e 69
10.3. DOUNAEA() .+ttt ettt e e e e e e e e 71
10.4. createdLifecyCleEVENt()cvu ittt e 72
10.5. @dTETNG() «vvett e e 73
10.6. loadedLifeCyCleEVENT()o oottt et e e 74
10.7. MIXTNMETNOA() vttt ettt e e e e e e e 76
T0.8. MATUTE () vttt ettt e e e e e e e e 77
10.9. persistedLifecyCleEVENt().ottt e 79
10.10. persistingLifecyCleEVent()o ottt 80
10,10, 0D OOt T PO) w vttt ettt e e e 82
10.12. pUBLISRING() wven et e 83
10.13. removingLifecyCleEVent()coott it e 84
10.14. updatingLifecyCleEVENt().ottt e 86
10.15. updatedLifecyCleEVENt()ttt e e e 88
11. @Domain0bjectlayout . ..ot e 91
111, BOOKMATKTNG () w v ettt ettt ettt et e e et e e e 92
L0 2. CSSCLASS () vt ettt e e e e 94
11,3, CSSCLASSFA() vttt ettt e e e e 94
11.4. €SSCIASSUIEVENT() . . . o oottt ettt ettt e e et e e e e e e 95
11,5, deSCribRAAS () vttt ettt e e e e e e 97
11.6. ICONUIEVENT() ..o vei ittt e ettt e ettt 97
IR T 1=« 99

108, PAGEA() vttt ittt e e e e e 100

0 L TR VT 1 100

11.10. tHIEUIEVENT() . « o o vt ettt et et e e e et e e e et e e e e e e i 101
B 1o T YT] PP 104
3 R T U <X T 104
0 13 =Tl o Y/ L=) S P 106
12,3, rePOSTEOrYFOr () vttt e e e 107
13, @DomMaTNSerVICaLayOUL .ottt e e e e e e e e i e 108
13, L. MENUBAT () ottt ettt e et e e e e e 108
13,2, MENUOTAOT () vttt ettt e e e e e e e e e e e e e 111
020 TR T [11<T« 1 (T 112
] =T < o 114
LS. BHOMEPAGE . . ettt e e e e 115
16, @INJECt (JAVAX) ettt e et ettt e e e e 117
16.1. AILErNAtiVE SYITAKES . . o vttt ittt ettt e ettt et e e e e e e ettt e 117
16.2. Injecting colleCtion Of SEIVICES v vttt et et i et 118
16.3. Manually injecting SEIVICES. . .. v vttt ettt ettt e e e et 118
17, @BMembErGrOUP LAy OUL ottt e e e e e e e e e e e e 120
T T o T=T o PP 121
S L DG PP 122
19,1, Method () v vttt e e e e 122
20. ENULLEDLE (JAVAX) « e ettt ettt et et e e e e et e e e e e e e e 124
21. @NotPersistent (JavaX. Jd0) . ..ottt e e 125
2. BTN NG o e 126
2. BParaME Tl ottt e e 127
23, L. FALACCEPE () v ettt it e e e 128
23.2. maXLength () .ot e 129
23,3 MUSESAETSTY () o ettt e 129
23,4, OPETONALTEY () oottt et 130
23,5, TegeXPat N () ottt e e e 131
24, BParameterLayoUt ..ot e e e e e e e e e e i 133
24,0, CSSCLaSS () vttt et e e 134
24,2, deSCTIDOAAS ()t vttt et e e e e 134
24.3. 13DeTIPOSTTION() v vttt ettt e e e e e e 135
244, MULETLTNE() vttt ettt e e e e e e e e e 136
24,5, MAMEA() ot ettt e 136
24.6. renderedAsDayBefore () o ov it e e 137
24. 7. typicallength() «vv et e 138
25. @PersistenceCapable (JAvax.Jdo).ot e 139
0 R =5 € 441) (= PP 139
25,2, PrECRABIICE ..ottt ittt et e e 140

26. EPOStCONSTIUCT (JAVAX) .ottt et et e e 141

27 BPrEDE SOy (JAVAX) et ittt et e e e e 143

28. @PrimaryKey (Javax.Jdo)ttt e 144
20, BPrOgrammMat i C . oottt e e 145
1 10 TR 0 =T P 146
30.1. Command Persistence and ProCessingouuuieittiiin i iiiineeennnnnn. 148
30.2. dOMATNEVENT () vttt ettt e e e e e e e e 152
30.3. @TETNG() « vttt ettt e e e e 155
30,4, FAILEACCEPT () ittt e e e 155
30.5. NN () oottt et e e e 156
30.6. MaXLENGth () oottt e 157
30.7. MUSESAETSTY() tuv ettt ettt e 158
30.8. NOtPErSTSTOA() vttt et e e e e 159
30.9. OPETONALIEY() v vttt ettt et et 160
30.10. regeXPatterN () oottt e e 163
1 R] =T V2 1 LU PP 164
L. L. CSSCLASS () v ettt e e 165
312, deSCIIDRAAS () vttt ettt e e e e e e 166
31.3. 1A TPOSTETON() vttt ettt e e e e e e e e e 166
103 0 TV S o 1 1 1 =Y T 168
31.5. NAMEAQ) o v vttt e e e e 169
3.6, PromPtSTY e () ettt e e e 170
31.7. renderedAsDayBefore () . .ou it e e 170
31.8. typicallength() . oovnn e e e 171
31.9. UNChENGTNG() .« ettt ittt et e e e e e 172
32, @ReqUESESCOPEA (JAVEX) .« vttt ettt et et e e e e e 173
10 T I A P 174
33.1. LOMDOK SUPPOTT. . o vttt ettt et et e e et e e e 174
34, AVAeWMOdeL ..o e 176
1 1 TR AT L L o = L Y LU P 178
35, CSSCLASS () vttt et e e 179
35,2, CSSCLASSFA() vttt et e 179
35.3. d0SCTTDRAAS () vttt ettt e e e e 180
354 NAMEA() v vttt e e e e e e e 180
35,5, PAGEA () vttt ittt e e e e e e 181
1 1o L TR 0 VT =1 181
36. @XmlJavaTypeAdapter (Jaxb)ot e 182
37. @XmLRootELement (Jaxbh) . ..ot 183
3. BRI . ottt 183

37,2, SR AlS0 .t ittt e 184

Chapter 1. Annotations

This guide describes the various annotations used by Apache Isis to provide additional metadata
about the domain objects. Most of these are defined by Isis itself, but some are from other libraries.
It also identifies a number of annotations that are now deprecated, and indicates their
replacement.

1.1. Other Guides

Apache Isis documentation is broken out into a number of user, reference and "supporting
procedures” guides.

The user guides available are:

¢ Fundamentals

o Wicket viewer

Restful Objects viewer

* DataNucleus object store
* Security

* Testing

* Beyond the Basics
The reference guides are:

* Annotations (this guide)

* Domain Services

* Configuration Properties

¢ Classes, Methods and Schema
» Apache Isis Maven plugin

* Framework Internal Services
The remaining guides are:

* Developers' Guide (how to set up a development environment for Apache Isis and contribute
back to the project)

* Committers' Guide (release procedures and related practices)

1.2. Examples
To give just a few examples of annotations supported by Apache Isis:

« if a property is read-only, then this can be annotated with @Property(editing=EditingDISABLED).

 if a class has a small fixed set of instances (eg a picklist), then it can be annotated using

../ugfun/ugfun.pdf
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../ugodn/ugodn.pdf
../ugsec/ugsec.pdf
../ugtst/ugtst.pdf
../ugbtb/ugbtb.pdf
../rgant/rgant.pdf
../rgsvc/rgsvc.pdf
../rgcfg/rgcfg.pdf
../rgcms/rgcms.pdf
../rgmvn/rgmvn.pdf
../rgfis/rgfis.pdf
../dg/dg.pdf
../cgcom/cgcom.pdf

@DomainObject(bounded=true)

* if a class is a domain service and should be automatically instantiated as a singleton, then it can
be annotated using @DomainService

o if an action is idempotent, then it can be annotated using
@Action(semantics=SemanticsOf.IDEMPOTENT).

«if an action parameter is optional, it can be annotated using
@Parameter (optionality=Optionality.0OPTIONAL)

Some annotations act as UI hints, for example:

 if a collection should be rendered "open" rather than collapsed, it can be annotated using
@CollectionLayout(render=RenderType.EAGERLY)

« if an action has a tooltip, it can be annotated using @ActionLayout(describedAs=---)

«if a domain object is bookmarkable, it can be annotated using
@DomainObjectLayout(bookmarking=BookmarkPolicy.AS_ROOT).

Chapter 2. Summary

This section summarizes the various annotations supported by Apache Isis. They break out into

five categories.

2.1. Core annotations

In Apache Isis every domain object is either a domain entity, a view model or a domain service.
And each of these are made up of properties, collections and actions (domain services only have

actions).

For each of these domain types and members there are two annotations. One covers the semantics
intrinsic to the domain (eg whether an action parameter is optional or not), then other (suffix -
Layout) captures semantics relating to the Ul/presentation layer.

Q Most UI semantics can also be specified using dynamic object layout.

The table below summarizes these most commonly used annotations in Apache Isis.

Table 1. Core annotations for domain objects, services and members

Annotation

@Action
@ActionlLayout
@Collection
@CollectionlLayout

@omainObject

@omainObjectlayout

@DomainService

@DomainServicelayout
@Parameter

@ParameterlLayout

@Property

@Propertylayout

Purpose

Domain semantics for actions
User interface hints for actions
Domain semantics for collections
User interface hints for collections

Domain semantics for domain object (entities
and optionally view models, see also @ViewModel)

User interface hints for domain object (entities

and optionally view models, see also
@ViewModellLayout)

Class is a domain service (rather than an entity
or view model)

User interface hints for domain services
Domain semantics for action parameters

Layout hints for an action parameter (currently:
its label position either to top or the left).

Domain semantics for properties

Layout hints for a property

Layer

Domain
UI
Domain
UI

Domain

Ul

Domain

Ul
Domain

Ul

Domain

Ul

File-based
layout?

Yes

Yes

Yes

Yes

Yes

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Action
../rgant/rgant.pdf#_rgant-ActionLayout
../rgant/rgant.pdf#_rgant-Collection
../rgant/rgant.pdf#_rgant-CollectionLayout
../rgant/rgant.pdf#_rgant-DomainObject
../rgant/rgant.pdf#_rgant-DomainObjectLayout
../rgant/rgant.pdf#_rgant-DomainService
../rgant/rgant.pdf#_rgant-DomainServiceLayout
../rgant/rgant.pdf#_rgant-Parameter
../rgant/rgant.pdf#_rgant-ParameterLayout
../rgant/rgant.pdf#_rgant-Property
../rgant/rgant.pdf#_rgant-PropertyLayout

Annotation

@ViewModel

@ViewModellayout

Purpose

Specify that a class is a view model (as opposed
to an entity or domain service); equivalent to
@DomainObject(nature=VIEW_MODEL).

User interface hints for view models. For use
with @ViewModel. If specifying view models using
@DomainObject(nature=VIEW_MODEL) then use

@DomainObjectLayout)

2.2. Other Isis Annotations

Layer File-based
layout?

Domain,

Persistence

Ul Yes

These annotations are also commonly used, but relate not to objects or object members but instead
to other aspects of the Apache Isis metamodel.

Table 2. Other Isis Annotations

Annotation

@Facets

@HomePage

@MemberOrder

@MinLength

@Programmatic

Purpose

Install arbitrary facets within the Apache Isis

metamodel.

Query-only action (on domain service) to be
invoked, result of which is rendered as the

user’s home page.

Ordering of properties, collections and actions,
and also associating actions with either a

property or a collection.

Minimum number of characters required for an
auto-complete search argument.

Ignore a public method, excluded from the

Apache Isis metamodel.

2.3. JDO Annotations

Layer File-based
layout?

(any)

Ul

Ul Yes

Ul

Domain

Apache Isis uses JDO/DataNucleus as its ORM, and infers some of its own metadata from the JDO

annotations.

Isis (currently) builds up metadata by parsing the JDO annotations from source,

not by querying the JDO metamodel.

The upshot is that, for the annotations

documented here at least, your domain entities must use JDO annotations rather

A than XML.

Furthermore, note that although JDO (the property-related) annotations to be
placed on either the field or on the getter, Apache Isis requires that annotations
are placed on the getter.

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ViewModel
../rgant/rgant.pdf#_rgant-ViewModelLayout
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Facets
../rgant/rgant.pdf#_rgant-HomePage
../rgant/rgant.pdf#_rgant-MemberOrder
../rgant/rgant.pdf#_rgant-MinLength
../rgant/rgant.pdf#_rgant-Programmatic

The table below lists the JDO annotations currently recognized by Apache Isis.

Table 3. JDO Annotations

Annotation Purpose Layer Applies to
@javax.jdo.annotations Used to determine whether a property is Domain/ Property

. mandatory or optional. For Stringand persistence

Column BigDecimal properties, used to determine

length/precision/scale.

@javax.jdo.annotations Qverride for the object type, as used in Domain/ Class
. Bookmark's, URLs for RestfulObjects viewer and persistence
Discriminator elsenhere.

Note that the discriminator overrides the
object type that may otherwise be inferred

from the @PersistenceCapable‘ annotation.

@javax.jdo.annotations Used to determine whether to enforce or skip ~ Domain/ Property
some metamodel validation for @Column versus persistence

NotPersistent equivalent Isis annotations.

@javax.jdo.annotations Used to build Apache Isis' own internal Domain/ Class
. identifier for objects.
 If the persistence
PersistenceCapable <code>schema()</code> attribute is specified

(and if <a href="../rgant/rgant.pdf#rgant-
Discriminator"><code>@Discriminator</code></
a> _hasn’t been specified), is also
used to derive the object type, as used in
"Bookmark s, URLs for RestfulObjects
viewer and elsewhere.

@javax.jdo.annotations Used to ensure Apache Isis does not overwrite ~ Domain/ Property
. application-defined primary keys, and to ensure persistence
PrimaryKey is read-only in the UL

Isis also parses the following JDO annotations, but the metadata is currently unused.

Table 4. JDO Annotations (unused within Apache Isis)

Annotation Purpose Layer Applies to
@javax.jdo.annotations Unused Persistence Class
bataStoreIdentity

@javax.jdo.annotations Unused Persistence Class
émbeddedOnly

@javax.jdo.annotations Unused Persistence Class
duery

../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Discriminator
../rgant/rgant.pdf#_rgant-Discriminator
../rgant/rgant.pdf#_rgant-Discriminator
../rgant/rgant.pdf#_rgant-Discriminator
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-NotPersistent
../rgant/rgant.pdf#_rgant-NotPersistent
../rgant/rgant.pdf#_rgant-NotPersistent
../rgant/rgant.pdf#_rgant-NotPersistent
../ugbtb/ugbtb.pdf#_ugbtb_programming-model_custom-validator
../rgant/rgant.pdf#_rgant-PersistenceCapable
../rgant/rgant.pdf#_rgant-PersistenceCapable
../rgant/rgant.pdf#_rgant-PersistenceCapable
../rgant/rgant.pdf#_rgant-PersistenceCapable
../rgant/rgant.pdf#_rgant-PrimaryKey
../rgant/rgant.pdf#_rgant-PrimaryKey
../rgant/rgant.pdf#_rgant-PrimaryKey
../rgant/rgant.pdf#_rgant-PrimaryKey

2.4.Java EE Annotations

While Apache Isis does, as of today, define a good number of its own annotations, the policy is to
reuse standard Java/JEE annotations wherever they exist or are added to the Java platform.

The table below lists the JEE annotations currently recognized. Expect to see more added in future
releases of Apache Isis.

Table 5. Java EE Annotations

Annotation Purpose Layer File-based
layout?
@javax.validation. Precision/scale for BigDecimal values. Domain
constraints.
Digits
@javax.inject. Inject domain service into a domain object Domain
Inject (entity or view model) or another domain
service.
@javax.annotation. Specify that a property/parameter is optional. Domain

Nullable

@javax.annotation.

PostConstruct

@javax.annotation.

PreDestroy

@javax.enterprise.

Callback for domain services (either singleton or Domain
request-scoped) to initialize themselves once
instantiated.

Callback for domain services (either singleton or Domain
request-scoped) to clean up resources prior to
destruction.

Specify that a domain service has request-scope Domain

context.
RequestScoped

(rather than a singleton).

javax.xml.bind
.annotation
XmlRootElement

JAXB annotation indicating the XML root Applicatio
element when serialized to XML; also used by n

the framework for view models (whose

memento is the XML), often also acting as a DTO.

javax.xml.bind Domain
.annotation

XmlJavaTypeAdapter

JAXB annotation defining how to serialize an
entity. Used in conjunction with the (framework
provided) PersistentEntityAdapter class to
serialize persistent entities into a canonical OID
(equivalent to the Bookmark provided by the
BookmarkService).

2.5. Deprecated Annotations

As Apache Isis has evolved and grown, we found ourselves adding more and more annotations; but
most of these related to either an object type (entity, view model, service) or an object member
(property, collection, action). Over time it became harder and harder for end programmers to
discover these new features.

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Inject
../rgant/rgant.pdf#_rgant-Inject
../rgant/rgant.pdf#_rgant-Inject
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-Digits
../rgant/rgant.pdf#_rgant-PostConstruct
../rgant/rgant.pdf#_rgant-PostConstruct
../rgant/rgant.pdf#_rgant-PostConstruct
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-PreDestroy
../rgant/rgant.pdf#_rgant-PreDestroy
../rgant/rgant.pdf#_rgant-PreDestroy
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-XmlRootElement
../rgant/rgant.pdf#_rgant-XmlRootElement
../rgant/rgant.pdf#_rgant-XmlRootElement
../rgant/rgant.pdf#_rgant-XmlRootElement
../rgant/rgant.pdf#_rgant-XmlRootElement
../rgant/rgant.pdf#_rgant-XmlJavaTypeAdapter
../rgant/rgant.pdf#_rgant-XmlJavaTypeAdapter
../rgant/rgant.pdf#_rgant-XmlJavaTypeAdapter
../rgant/rgant.pdf#_rgant-XmlJavaTypeAdapter
../rgant/rgant.pdf#_rgant-XmlJavaTypeAdapter
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService

Accordingly, (in v1.8.0) we decided to unify the semantics into the main (core) annotations listed

above.

The annotations listed in the table below are still supported by Apache Isis, but will be retired in

Apache Isis v2.0.

Table 6. Deprecated Annotations

Annotation

@ActionOrder

@ActionInteracti
on

@ActionSemantics

@Audited

@AutoComplete

@Bookmarkable

@Bounded

@Bulk

@CollectionInter
action

@Command

Purpose

Order of buttons and menu items
representing actions.

Enable subscribers on the Event
Bus Service to either veto, validate
or take further steps before/after
an action has been invoked.

Query-only, idempotent or non-
idempotent.

Audit changes to an object.

Repository method to search for
entities

Whether (and how) to create a
bookmark for visited object.

Bounded (and limited) number of
instances of an entity type,
translates into a drop-down for
any property of that type.

Indicates an action is a bulk action,
can be applied to multiple
instances.

Enable subscribers on the Event
Bus Service to either veto, validate
or take further steps before/after a
collection has been added to or
removed from.

Action invocation should be reified
as a command object, optionally
persistable for profiling and
enhanced auditing, and
background/async support.

Use instead

@MemberOrder

@Action#domainEvent()

@Action#tisemantics()

@DomainObject#
auditing()

@DomainObject

f#fautoCompleteRepository(

)

@DomainObjectlLayout

#bookmarking()

@DomainObject#bounded()

@Action#invokeOn()

@Collection#domainEvent(

@Action#command()

Layer

Ul

Domain

Domain
Domain

UI/Dom
ain

Ul

Domain

U],
Domain

Domain

Domain

File-
based
layout?

Yes

../rgant/rgant.pdf#_rgant-aaa_main
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-MemberOrder
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-DomainObject_auditing
../rgant/rgant.pdf#_rgant-DomainObject_auditing
../rgant/rgant.pdf#_rgant-DomainObject_auditing
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository
../rgant/rgant.pdf#_rgant-DomainObjectLayout_bookmarking
../rgant/rgant.pdf#_rgant-DomainObjectLayout_bookmarking
../rgant/rgant.pdf#_rgant-DomainObjectLayout_bookmarking
../rgant/rgant.pdf#_rgant-DomainObject_bounded
../rgant/rgant.pdf#_rgant-Action_invokeOn
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Action_command

Annotation

@CssClass

@CssClassFa

@Debug

@DescribedAs

@Disabled

@Exploration

@FieldOrder

@Hidden

@Idempotent

Purpose

Allow visual representation of
individual objects or object
members layout to be customized
by application-specific CSS.

So that font awesome icons can be
applied to action buttons/menu
items and optionally as an object
icon.

Action only invokable in debug
mode.

Provide a longer description/tool-
tip of an object or object member.

Object property cannot be edited,
an object collection cannot be
added to/removed from, or an
object action cannot be invoked.

Action available in special
'exploration’ mode.

Order of properties and
collections.

Object member is not visible, or on

domain service (to indicate that
none of its actions are visible).

Whether an action is idempotent
(can be invoked multiple times
with same post-condition).

Use instead

#icssClass() attribute for:
@DomainObjectlLayout,
@Propertylayout,
@CollectionlLayout,

@ActionlLayout and
@ParameterLayout

cssClassFa() attribute for:

@ActionlLayout,

DomainObjectlLayout and
ViewModellayout

Not supported by either
the Wicket viewer or the
RestfulObjects viewer;
use prototype mode
instead
(@ActionfirestrictTo())

#idescribedAs() attribute
for @DomainObjectlLayout,
@Propertylayout,
@CollectionLayout,

@ActionlLayout and
@ParameterLayout

#editing() attribute for
@Property, @Collection
and @DomainObject

Not supported by either
the Wicket viewer or the
RestfulObjects viewer;
use prototype mode
instead
(@ActionfirestrictTo())

@MemberOrder

For domain object
members, use #hidden()
attribute of Action,
Property or Collection.
For domain service, use
@DomainService(
nature=DOMAIN)

@Action#fsemantics

Layer File-
based
layout?

Ul Yes

Ul Yes

Ul

Ul Yes

Ul, Yes

Domain

Ul

Ul Yes

Ul, Yes

Domain

Domain

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClassFa
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassFa
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClassFa
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-Action_restrictTo
../rgant/rgant.pdf#_rgant-DomainObject_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-Property_editing
../rgant/rgant.pdf#_rgant-Collection_editing
../rgant/rgant.pdf#_rgant-DomainObject_editing
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-Action_restrictTo
../rgant/rgant.pdf#_rgant-MemberOrder
../rgant/rgant.pdf#_rgant-Action_hidden
../rgant/rgant.pdf#_rgant-Property_hidden
../rgant/rgant.pdf#_rgant-Collection_hidden
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-Action_semantics

Annotation

@Ignore

@Immutable

@Mask

@MaxLength

@MemberGroups

@MemberGroup

Layout®

@Multiline

@MustSatisfy

@Named

Purpose

Exclude this method from the

metamodel.

An object’s state cannot be
changed (properties cannot be
edited, collections cannot be added
to or removed from). Actions can
still be invoked.

How to parse/render values (never
properly supported)

Maximum length of a property
value (strings).

Layout of properties and
collections of a domain object or
view model object.

Grouping of properties into
groups, and organizing of
properties, collections into

columns.

Render string property over
multiple lines (a textarea rather
than a textbox).

Specify arbitrary specification
constraints on a property or action

parameter.

Override name inferred from
class. Required for parameter
names (prior to Javas).

Use instead

@Programmatic.

@Ignore was deprecated
because it can easily clash
with @org.junit.Ignore.

@DomainObject#editing()

(None)

#maxLength() attribute for
@Property or @Parameter

dynamic .layout.xml files

dynamic .layout.xml files

#multiline() attribute for
@Property or @Parameter

#mustSatisfy() attribute

for @Property or
@Parameter

#named() attribute for
@DomainServicelayout,
@DomainObjectlayout,
@Propertylayout,
@CollectionlLayout,

@ActionLayout and
@ParameterLayout

Layer File-
based
layout?

Domain

Domain

Ul/dom
ain

Domain

Ul Yes

Ul Yes

Ul Yes

Domain

Ul Yes

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Programmatic
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgant/rgant.pdf#_rgant-Property_maxLength
../rgant/rgant.pdf#_rgant-Parameter_maxLength
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Property_multiLine
../rgant/rgant.pdf#_rgant-Parameter_multiLine
../rgant/rgant.pdf#_rgant-Property_mustSatisfy
../rgant/rgant.pdf#_rgant-Parameter_mustSatisfy
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named

Annotation

@NotContributed

@NotInServiceMen
u

@NotPersisted

@0bjectType

@0ptional

@Paged

@Plural

10

Purpose

Indicates that a domain service
action is not rendered as an action
on the (entity) types of its
parameters. For 1-arg query-only
actions, controls whether the
domain service action is rendered
as a property or collection on the
entity type of its parameter.

Indicates that a domain service
should not be rendered in the
application menu (at top of page in
Wicket viewer).

Indicates that an object property is
not persisted (meaning it is
excluded from view model
mementos, and should not be
audited).

For constructing the external
identifier (URI) of an entity
instance (part of its URL in both
Wicket viewer and Restful Objects
viewer). Also part of the toString
representation of bookmarks, if
using the Bookmark Service

Specifies that a property or action
parameter is not mandatory.

Number of instances to display in
tables representing (standalone or
parented) collections.

For the irregular plural form of an
entity type.

File-
based
layout?

Use instead Layer

Use
@DomainServicettnature()
to specify whether any of
the actions in a domain
service should appear in
the menu bars (applies at
type level, not action
level). For individual
actions, use
@ActionlLayout#
contributedAs() to specify
whether any individual
action should be
contributed only as an
action or as an
association (property or
collection).

Ul

@DomainService#inature() Ul
to signify that none of the
actions in a domain

service should appear in

the menu bars

#inotPersisted() attribute Domain

of @Property and)
@Collection Persiste

nce

@DomainObject#objectType
O

Domain

#optionality() attribute Domain

for @Property or
@Parameter
Ul

#paged() attribute for Yes

@DomainObjectLayout or
@Collectionlayout

@DomainObjectLayout Ul

#iplural()

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs
../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs
../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-Property_notPersisted
../rgant/rgant.pdf#_rgant-Collection_notPersisted
../rgant/rgant.pdf#_rgant-DomainObject_objectType
../rgant/rgant.pdf#_rgant-DomainObject_objectType
../rgant/rgant.pdf#_rgant-Property_optionality
../rgant/rgant.pdf#_rgant-Parameter_optionality
../rgant/rgant.pdf#_rgant-DomainObjectLayout_paged
../rgant/rgant.pdf#_rgant-CollectionLayout_paged
../rgant/rgant.pdf#_rgant-DomainObject_plural
../rgant/rgant.pdf#_rgant-DomainObject_plural
../rgant/rgant.pdf#_rgant-DomainObject_plural

Annotation

@PostsAction
InvokedEvent

@PostsCollection
AddedToEvent

@PostsCollection
RemovedFromEvent

@PostsProperty
ChangedEvent

@PropertylInterac
tion

@Prototype

@PublishedAction

@PublishedObject

@QueryOnly

@RegEx

@Render

©RenderedAsDayBe
fore

Purpose

Post a domain event to the Event
Bus Service indicating that an
action has been invoked.

Post a domain event to the Event
Bus Service indicating that an
element has been added to a
collection.

Post a domain event to the Event
Bus Service indicating that an
element has been removed from a
collection.

Post a domain event to the Event
Bus Service indicating that the
value of a property has changed.

Enable subscribers on the Event
Bus Service to either veto, validate
or take further steps before/after a
property has been modified or
cleared.

Indicates that an action should

only be visible in 'prototype’ mode.

Action invocation should be
serialized and published by
configured PublishingService (if
any), eg to other systems.

Change to object should be
serialized and published by
configured PublishingService (if
any), eg to other systems.

Whether an action is query-only
(has no side-effects).

Validate change to value of string
property.

Eagerly (or lazily) render the
contents of a collection.

Render dates as the day before; ie
store [a,b) internally but render
[a,b-1]) to end-user.

Use instead Layer File-
based
layout?

@Action#tdomainEvent() Domain

@Collection#tdomainEvent(Domain

)

@Collection#domainEvent(Domain

)

@Property#domainEvent() Domain

@Property#domainEvent() Domain

@ActionfirestrictTo() Ul Yes

@Action#tpublishing() Domain

@DomainObject#publishing Domain

0

@Action#tsemantics() Domain

#iregexPattern() for Domain

@Property or @Parameter.

@CollectionLayout Ul Yes

firender ()

#irenderedAsDayBefore() Ul

attribute for
@PropertylLayout and
@ParameterLayout.

11

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent
../rgant/rgant.pdf#_rgant-Action_restrictTo
../rgant/rgant.pdf#_rgant-Action_publishing
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-Property_regexPattern
../rgant/rgant.pdf#_rgant-Property_regexPattern
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-PropertyLayout_renderedAsDayBefore
../rgant/rgant.pdf#_rgant-ParameterLayout_renderedAsDayBefore

Annotation Purpose Use instead Layer File-

based
layout?
OResolve Eagerly (or lazily) render the @CollectionLayout Ul Yes
contents of a collection (same as #render ()
@Render)
@SortedBy Display instances in collections in @CollectionlLayout Ul Yes
the order determined by the fisortedBy()
provided Comparator.
@TypeOf The type of entity stored withina #type0f() attribute for Domain
collection, or as the result of @Collection and @Action
invoking an action, if cannot be
otherwise inferred, eg from
generics.
@Typicallength The typical length of a string #typicallength() attribute UI Yes
property, eg to determine a for @PropertylLayout and
sensible length for a textbox. @Parameterlayout

2.6. Incomplete/partial support

These annotations have only incomplete/partial support, primarily relating to the management of
value types. We recommend that you do not use them for now. Future versions of Apache Isis may
either formally deprecate/retire them, or we may go the other way and properly support them.
This will depend in part on the interactions between the Apache Isis runtime, its two viewer
implementations, and DataNucleus persistence.

Table 7. Annotations with incomplete/partial support

Annotation Purpose Layer
@Aggregated Indicates that the object is aggregated, or wholly Domain,
owned, by a root object. Persistence

This information could in theory provide useful
semantics for some object store implementations, eg to
store the aggregated objects "inline".

Currently neither the JDO ObjectStore nor any of the
viewers exploit this metadata.

12

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-CollectionLayout_sortedBy
../rgant/rgant.pdf#_rgant-CollectionLayout_sortedBy
../rgant/rgant.pdf#_rgant-CollectionLayout_sortedBy
../rgant/rgant.pdf#_rgant-Collection_typeOf
../rgant/rgant.pdf#_rgant-Action_typeOf
../rgant/rgant.pdf#_rgant-PropertyLayout_typicalLength
../rgant/rgant.pdf#_rgant-ParameterLayout_typicalLength

Annotation

@Defaulted

@Encodable

@NotPersistable

Purpose Layer

Indicates that a (value) class has a default value. Domain
The concept of "defaulted" means being able to provide
a default value for the type by way of the
0.3.1.applib.adapters.DefaultsProvider interface.
Generally this only applies to value types, where the
@Value annotation implies encodability through the
ValueSemanticsProvider interface.

For these reasons the @Defaulted annotation is generally
never applied directly, but can be thought of as a
placeholder for future enhancements whereby non-
value types might also have a default value provided
for them.

Indicates that a (value) class can be serialized/encoded. Persistence
Encodability means the ability to convert an object to-
and-from a string, by way of the
0.a.i.applib.adapters.EncoderDecoder interface.
Generally this only applies to value types, where the
@Value annotation implies encodability through the
ValueSemanticsProvider interface. For these reasons the
@Encodable annotation is generally never applied
directly, but can be thought of as a placeholder for
future enhancements whereby non-value types might
also be directly encoded. Currently neither the Wicket
viewer nor the RO viewer use this API. The Wicket
viewer uses Wicket APIs, while RO viewer has its own
mechanisms (parsing data from input JSON
representations, etc.)

Indicates that a domain object may not be Domain,
programmatically persisted. Persistence
+ This annotation indicates that transient instances of

this class may be created but may not be persisted. The
framework will not provide the user with an option to

'save' the object, and attempting to persist such an

object programmatically would be an error. For

example: [source,java] ---- @NotPersistable(By.USER)

public class InputForm { ... } -— By default the

annotated object is effectively transient (ie default to

By .USER_OR_PROGRAM). This annotation is not supported

by: Wicket viewer (which does not support transient

objects). See also ISIS-743 contemplating the removal of

this annotation.

13

https://issues.apache.org/jira/browse/ISIS-743

Annotation

@Parseable

@Value

14

Purpose Layer

Indicates that a (value) class can be reconstructed from UI, Domain

a string.

Parseability means being able to parse a string
representation into an object by way of the
0.3.1.applib.adapters.Parser interface. Generally this
only applies to value types, where the @Value
annotation implies encodability through the
ValueSemanticsProvider interface.

For these reasons the @Parser annotation is generally
never applied directly, but can be thought of as a
placeholder for future enhancements whereby non-
value types might also have be able to be parsed.
Note that the Wicket viewer uses Apache Wicket’s
Converter API instead.

Specify that a class has value-semantics. Domain
The @Value annotation indicates that a class should be
treated as a value type rather than as a reference (or
entity) type. It does this providing an implementation of
ao.a.i.applib.adapters.ValueSemanticsProvider.

For example:

[source,java] - @Value(semanticsProviderClass=
ComplexNumberValueSemanticsProvider.class) public
class ComplexNumber{ ...} --—-The
ValueSemanticsProvider allows the framework to
interact with the value, parsing strings and displaying
as text, and encoding/decoding (for serialization).

Chapter 3. @Action

The @Action annotation groups together all domain-specific metadata for an invokable action on a
domain object or domain service.

The table below summarizes the annotation’s attributes.

Table 8. @Action attributes

Attribute

associateWith()

associateWith-
Sequence()

command()

commandExecuteIn()

commandPersistence()

commandDtoProcessor()

domainEvent()

hidden()

invokeOn()

Values (default)

memberld

")

memberld

(")

AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

FOREGROUND,BACKGROUND
(FOREGROUND)

PERSISTED,
NOT_PERSISTED,
IF_HINTED
(PERSISTED)

Implementation of
CommandDtoProcessor
interface

(null)

subtype of
ActionDomainEvent

(ActionDomainEvent.Defa

ult)

EVERYWHERE, NOWHERE
(NOWHERE)

OBJECT_ONLY,
COLLECTION_ONLY,
OBJECT_AND_COLLECTION
(OBJECT_ONLY)

Description

associates an action with another property or
collection of the action.

associates an action with another property or
collection of the action.

whether the action invocation should be reified
intoao.a.i.applib.

services.command.Command object through the
CommandContext service.

whether to execute the command immediately,
or to persist it (assuming that an appropriate
implementation of CommandService has been
configured) such that a background scheduler
can execute the command asynchronously

whether the reified Command (as provided by the
CommandContext domain service) should actually
be persisted (assuming an appropriate
implementation of CommandService has been
configured).

If the Command also implements CommandWithDto
(meaning that it can return a CommandDto, in
other words be converted into an XML
memento), then optionally specifies a processor
that can refine this XML.

the event type to be posted to the
EventBusService to broadcast the action’s
business rule checking (hide, disable, validate)
and its invocation (pre-execute and post-
execute).

indicates where (in the UI) the action should be
hidden from the user.

(deprecated - use view models and associated
actions instead). whether an action can be
invoked on a single object and/or on many
objects in a collection. Currently this is only
supported for no-arg actions.

15

../rgant/rgant.pdf#_rgant-Action_associateWith
../rgant/rgant.pdf#_rgant-Action_associateWith
../rgant/rgant.pdf#_rgant-Action_associateWith
../rgant/rgant.pdf#_rgant-Action_command
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_CommandContext
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_CommandService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_CommandService
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-Action_hidden
../rgant/rgant.pdf#_rgant-Action_invokeOn

Attribute Values (default)

publishing() AS_CONFIGURED, ENABLED,
DISABLED

(AS_CONFIGURED)

publishing-
PayloadFactory()

subtype of
PublishingPayloadFacto

ry- ForAction (none)

restrictTo() NO_RESTRICTIONS,PROTOTY

PING
(NO_RESTRICTIONS)

SAFE_AND_REQUEST_CACHE
ABLE, SAFE,

IDEMPOTENT,
IDEMPOTENT_ARE_YOU_SUR

E

NON_IDEMPOTENT,
NON_IDEMPOTENT_ARE_YOU

_SURE +
(NON_IDEMPOTENT)

semantics()

typeOf() (none)

For example:

public class ToDoItem {

Description

whether the action invocation should be
published to the registered PublishingService.

(deprecated). specifies that a custom
implementation of
PublishingPayloadFactoryForAction be used to
create the (payload of the) published event
representing the action invocation

whether the action is only available in
prototyping mode, or whether it is available also
in production mode.

the action’s semantics (ie whether objects are
modified as the result of invoking this action,
and if so whether reinvoking the action would
result in no further change; if not whether the
results can be cached for the remainder of the
request). The ---ARE_YOU_SURE variants cause a
confirmation dialog to be displayed in the
Wicket viewer.

if the action returns a collection, hints as to the
run-time type of the objects within that
collection (as a fallback)

public static class CompletedEvent extends ActionDomainEvent<ToDoItem> { }

(

command=CommandReification.ENABLED,

commandExecuteIn=CommandExecuteIn.FOREGROUND,
commandPersistence=CommandPersistence.NOT_PERSISTED,

domainEvent=CompletedEvent.class,
hidden = Where.NOWHERE,

invokeOn = InvokeOn.OBJECT_ONLY,
publishing = Publishing.ENABLED,
semantics = SemanticsOf.IDEMPOTENT

)
public ToDoItem completed() { ... }

@ default value, so could be omitted
@ default value, so could be omitted
® default value, so could be omitted

@ default value, so could be omitted

16

®O@ OO

../rgant/rgant.pdf#_rgant-Action_publishing
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublishingService
../rgant/rgant.pdf#_rgant-Action_restrictTo
../rgant/rgant.pdf#_rgant-Action_semantics
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-Action_typeOf

3.1. associateWith()

The associateWith attribute allows an action to be associated with other properties or collections of
the same domain object. The optional associateWithSequence attribute specifies the order of the
action in the UL

For example, an Order could have a collection of OrderItems, and might provide actions to add and

remove items:

public class Order {

SortedSet<OrderItem> getItems() { ... }

(associateWith="items", associateWithSequence="1")
public Order addItem(Product p, int quantity) { ... }

(associateWith="items", associateWithSequence="2")
public Order removeltem(OrderItem item) { ... }

These actions - addItem() and removeltem() can be thought of as associated with with the items
collection because that is the state that they primarily affect.

In the user interface associated actions are rendered close to the member to which they relate.

o The same effect can be accomplished using @MemberOrder or with the .layout.xml
file.

3.1.1. Inferred Defaults and Choices

If an action is associated with a collection, then any scalar or collection parameter of the action that
is the same type as that collection will automatically have a list of choices provided for it, being the
items of the associated collection.

This is only done provided that there isn’t already an explicit choicesNXxx() or autoCompleteNXxx()
supporting method. However, this list of choices does take priority over any choices that are
inferred from the parameter type itself (as per either an @DomainObject(autoCompleteRepository=---)
or @DomainObject(bounded=--+)).

In addition, if the action has a collection parameter of the same type as the associated collection,
then the Wicket viewer will render the collection with checkboxes. The user can use these
checkboxes can be used to select the items of the action parameter.

For example, suppose we have a "removeltems(...)" action:

17

public class Order {

SortedSet<OrderItem> getItems() { ... }

(associateWith="items", associateWithSequence="2")
public Order removeltems(SortedSet<OrderItem> items) { ... }

The Wicket viewer will then render the "items" collection with checkboxes, and any selected items
will be used as the pre-selected set of items if the action is invoked.

3.2. Command Persistence and Processing

Every action invocation (and property edit for that matter) is automatically reified into a concrete
Command object. The @Action(command=---, commandXxx=--) attributes provide hints for the persistence
of that Command object, and the subsequent processing of that persisted command. The primary use
cases for this are to support the deferring the execution of the action such that it can be invoked in
the background, and to replay commands in a master/slave configuration.

Note that for a Command to actually be persisted requires an appropriate implementation of
CommandService SPIL. The framework does not provide an implementation of this SPI "out-of-the-box".
However, the (non-ASF) Incode Platform’s command module) does provide such an
implementation.

3.2.1. Design

The annotation works with (and is influenced by the behaviour of) a number of domain services:

« CommandContext
« CommandService
* BackgroundService and

« BackgroundCommandService

Each action invocation is automatically reified by the CommandContext service into a Command object,
capturing details of the target object, the action, the parameter arguments, the user, a timestamp
and so on.

If an appropriate CommandService is configured (for example using (non-ASF) Incode Platform’s
command module), then the Command itself is persisted.

By default, actions are invoked in directly in the thread of the invocation. If there is an
implementation of BackgroundCommandService (as the (non-ASF) Incode Platform's command module
does provide), then this means in turn that the BackgroundService can be used by the domain object
code to programmatically create background Commands.

18

http://platform.incode.org/modules/spi/command/spi-command.html
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_CommandContext
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_CommandService
../rgsvc/rgsvc.pdf#_rgsvc_spi_BackgroundService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_BackgroundCommandService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_CommandContext
http://platform.incode.org/modules/spi/command/spi-command.html
http://platform.incode.org/modules/spi/command/spi-command.html
http://platform.incode.org

0 If background Commands are used, then an external scheduler, using headless
access, must also be configured.

3.2.2. command() and commandPersistence()

The command() and ‘commandPersistence() attributes work together to determine whether a
command will actually be persisted. There inter-relationship is somewhat complex, so is probably
best explained by way of examples:

command () isis.service gaction’s command action is command persisted?

S d.acti declared I;ers1stence(dirties

commant. 3¢ semantics() objects?

ons config

property
ENABLED (any) (any) PERSISTED (either) yes
ENABLED (any) (any) IF_HINTED no no
ENABLED (any) (any) IF_HINTED yes yes
ENABLED (any) (any) NOT_PERSISTE (any) no

D

D
AS_CONFIGURE all (any) IF_HINTED no no
D
AS_CONFIGURE all (any) IF_HINTED yes yes
D
AS_CONFIGURE all (any) NOT_PERSISTE (any) no
D D
AS_CONFIGURE ignoreSafe or SAFE PERSISTED no no (1)
D ignoreQuery0

nly
AS_CONFIGURE ignoreSafe or SAFE IF_HINTED or no no
D e NOT_PERSISTE

nly D
AS_CONFIGURE jgnoreSafe or SAFE PERSISTED or yes yes
D ignoreQuery0 IF_HINTED

nly
AS_CONFIGURE ignoreSafe or SAFE NOT_PERSISTE yes yes (1)
D ignoreQuery0 b

nly
AS_CONFIGURE ignoreSafe or IDEMPOTENT or PERSISTED (any) yes
D ignoreQuery0 NON_IDEMPOTE

nly NT
AS_CONFIGURE jgnoreSafe or IDEMPOTENT or IF_HINTED no no

D

ignoreQuery0 NON_IDEMPOTE

nly NT

19

../ugbtb/ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
../ugbtb/ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution

command()

AS_CONFIGURE
D

AS_CONFIGURE
D

AS_CONFIGURE
D

AS_CONFIGURE
D

AS_CONFIGURE
D

AS_CONFIGURE
D

AS_CONFIGURE
D

AS_CONFIGURE
D

DISABLED
DISABLED
DISABLED
DISABLED
DISABLED

DISABLED

For example:

isis.service action’s

declared
semantics()

S.
command.acti

ons config
property

ignoreSafe or IDEMPOTENT or
ignoreQuery0 NON_IDEMPOTE

nly

ignoreSafe or IDEMPOTENT or

NT

command
Persistence(

IF_HINTED

NOT_PERSISTE

ignoreQuery0 NON_IDEMPOTE D

nly

none

none

none

none

none

none

(any)
(any)
(any)
(any)
(any)

(any)

public class Order {
@Action(

command=CommandReification.ENABLED,

commandPersistence=CommandPersistence.PERSISTED

)

NT

(any)

(any)

(any)

(any)

(any)

(any)

(any)
(any)
(any)
(any)
(any)

(any)

PERSISTED

PERSISTED

IF_HINTED

IF_HINTED

NOT_PERSISTE
D

NOT_PERSISTE
D

PERSISTED
PERSISTED
IF_HINTED
IF_HINTED

NOT_PERSISTE
D

NOT_PERSISTE
D

public Invoice generatelnvoice(...) { ... }

As can be seen, whether a command is actually persisted does not always follow the value of the
commandPersistence() attribute. This is because the command() attribute actually determines whether
any command metadata for the action is captured within the framework’s internal metamodel. If
command is DISABLED or does not otherwise apply due to the action’s declared semantics, then the

20

action
dirties
objects?

yes

=

any)

no

yes
no
yes
no
yes

no
yes
no

yes

no

yes

is command persisted?

yes

no

no (1)

yes

no

yes

no

yes (1)

no (1)
yes
no
yes

no

yes (1)

framework decides to persist a command based solely on whether the action dirtied any objects (as
if commandPersistence() was set to IF_HINTED).

3.2.3. commandExecutelIn()

For persisted commands, the commandExecuteIn() attribute determines whether the Command should
be executed in the foreground (the default) or executed in the background.

Background execution means that the command is not executed immediately, but is available for a
configured BackgroundCommandService to execute, eg by way of an in-memory scheduler such as
Quartz. See here for further information on this topic.

For example:

public class Order {
(

command=CommandReification.ENABLED,
commandExecuteIn=CommandExecuteIn.BACKGROUND

)

public Invoice generatelnvoice(...) { ... }

will result in the Command being persisted but its execution deferred to a background execution
mechanism. The returned object from this action invocation is the persisted Command itself.

3.2.4. commandDtoProcessor()

The commandDtoProcessor() attribute allows an implementation of CommandDtoProcessor to be
specified. This interface has the following API:

public interface CommandDtoProcessor {
CommandDto process(@)
Command command, @

CommandDto dto); ©)

@ The returned CommandDto. This will typically be the CommandDto passed in, but supplemented in
some way.

@ The Command being processed
® The CommandDto (XML) obtained already from the Command (by virtue of it also implementing

CommandWithDto, see discussion below).

This interface is used by the framework-provided implementations of ContentMappingService for the
REST API, allowing Commands implementations that also implement CommandWithDto to be further
customised as they are serialized out. The primary use case for this capability is in support of
master/slave replication.

21

../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_BackgroundCommandService
../ugbtb/ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution

* on the master, Commands are serialized to XML. This includes the identity of the target object and
the argument values of all parameters.

However, any Blobs and Clobs are deliberately excluded from this XML (they

o are instead stored as references). This is to prevent the storage requirements
for Command from becoming excessive. A CommandDtoProcessor can be provided
to re-attach blob information if required.

* replaying Commands requires this missing parameter information to be reinstated. The
CommandDtoProcessor therefore offers a hook to dynamically re-attach the missing Blob or Clob
argument.

As a special case, returning null means that the command’s DTO is effectively excluded when
retrieving the list of commands. If replicating from master to slave, this effectively allows certain
commands to be ignored. The CommandDtoProcessor.Null class provides a convenience
implementation for this requirement.

0 If commandDtoProcessor () is specified, then command() is assumed to be ENABLED.

Example implementation

Consider the following method:

(
domainEvent = IncomingDocumentRepository.UploadDomainEvent.class,
commandDtoProcessor = DeriveBlobArg@FromReturnedDocument.class
)
public Document upload(final Blob blob) {
final String name = blob.getName();
final DocumentType type = DocumentTypeData.INCOMING.findUsing
(documentTypeRepository);
final ApplicationUser me = meService.me();
String atPath = me != null ? me.getAtPath() : null;
if (atPath == null) {
atPath = "/";
}

return incomingDocumentRepository.upsertAndArchive(type, atPath, name, blob);

The Blob argument will not be persisted in the memento of the Command, but the information is
implicitly available in the Document that is returned by the action. The
DeriveBlobArg@FromReturnedDocument processor retrieves this information and dynamically adds:

22

public class DeriveBlobArg@FromReturnedDocument
extends CommandDtoProcessorForActionAbstract {

public CommandDto process(Command command, CommandDto commandDto) {
final Bookmark result = commandWithDto.getResult();
if(result == null) {
return commandDto;
}
try {
final Document document = bookmarkService.lookup(result, Document.class);
if (document != null) {
ParamDto paramDto = getParamDto(commandDto, 0);
CommonDtoUtils.setValueOn(paramDto, ValueType.BLOB, document.getBlob(
), bookmarkService);
}
} catch(Exception ex) {
return commandDto;

}
return commandDto;
}
BookmarkService bookmarkService;
}
Null implementation

The null implementation can be used to simply indicate that no DTO should be returned for a
Command. The effect is to ignore it for replay purposes:

pubc interface CommandDtoProcessor {

class Null implements CommandDtoProcessor {
public CommandDto process(Command command, CommandDto commandDto) {
return null;

}

3.3. domainEvent()

Whenever a domain object (or list of domain objects) is to be rendered, the framework fires off
multiple domain events for every property, collection and action of the domain object. In the cases
of the domain object’s actions, the events that are fired are:

* hide phase: to check that the action is visible (has not been hidden)

* disable phase: to check that the action is usable (has not been disabled)

23

 validate phase: to check that the action’s arguments are valid
» pre-execute phase: before the invocation of the action
* post-execute: after the invocation of the action

Subscribers subscribe through the EventBusService using either Guava or Axon Framework
annotations and can influence each of these phases.

By default the event raised is ActionDomainEvent.Default. For example:

public class ToDoltem {

0
public ToDoItem completed() { ... }

The domainEvent() attribute allows a custom subclass to be emitted allowing more precise
subscriptions (to those subclasses) to be defined instead. This attribute is also supported for
collections and properties.

For example:
public class ToDoltem {
public static class CompletedEvent extends ActionDomainEvent<ToDoItem> { } @

(domainEvent=CompletedEvent.class)
public ToDoItem completed() { ... }

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

The framework provides no-arg constructor and will initialize the domain event

o using (non-API) setters rather than through the constructor. This substantially
reduces the boilerplate required in subclasses because no explicit constructor is
required.

3.3.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

24

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
https://github.com/google/guava
http://www.axonframework.org/
../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent
https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ActionDomainEvent ev) {

}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.CompletedEvent ev) {

}

If the AxonFramework is being used,
Q @com.google.common.eventbus.Subscribe
@org.axonframework.eventhandling.annotation.EventHandler.

The subscriber’s method is called (up to) 5 times:

whether to veto visibility (hide)

whether to veto usability (disable)
» whether to veto execution (validate)
* steps to perform prior to the action being invoked.

* steps to perform after the action has been invoked.

replace
with

The subscriber can distinguish these by calling ev.getEventPhase(). Thus the general form is:

25

.google.common.eventbus.Subscribe
public void on(ActionDomainEvent ev) {
switch(ev.getEventPhase()) {
case HIDE:
// call ev.hide() or ev.veto("") to hide the action
break;
case DISABLE:
// call ev.disable("...") or ev.veto("...") to disable the action
break;
case VALIDATE:
// call ev.invalidate("...") or ev.veto("...")
// 1f action arquments are invalid
break;
case EXECUTING:
break;
case EXECUTED:
break;

It is also possible to abort the transaction during the executing or executed phases by throwing an
exception. If the exception is a subtype of RecoverableException then the exception will be rendered
as a user-friendly warning (eg Growl/toast) rather than an error.

3.3.2. Default, Doop and Noop events

If the domainEvent attribute is not explicitly specified (@is left as its default wvalue,
ActionDomainEvent.Default), then the framework will, by default, post an event.

If this is not required, then the isis.reflector.facet.actionAnnotation.domainEvent.postForDefault
configuration property can be set to "false"; this will disable posting.

On the other hand, if the domainEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides ActionDomainEvent.Doop as such a subclass, so setting the
domainEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides ActionDomainEvent.Noop; if domainEvent attribute is set
to this class, then no event will be posted.

3.3.3. Raising events programmatically

Normally events are only raised for interactions through the Ul. However, events can be raised
programmatically either by calling the EventBusService API directly, or by emulating the UI by
wrapping the target object using the WrapperFactory domain service.

26

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_WrapperFactory

3.4. hidden()

Actions can be hidden at the domain-level, indicating that they are not visible to the end-user. This
attribute can also be applied to properties and collections.

It is also possible to use @ActionLayout#hidden() or file-based layouts such that the
action can be hidden at the view layer. Both options are provided with a view

Q that in the future the view-layer semantics may be under the control of (expert)
users, whereas domain-layer semantics should never be overridden or modified
by the user.

For example:

public class Customer {
(hidden=Where.EVERYWHERE)
public void updateStatus() { ... }

The acceptable values for the where parameter are:
* Where.EVERYWHERE or Where.ANYWHERE
The action should be hidden at all times.
* Where.NOWHERE

The action should not be hidden.

The other values of the Where enum have no meaning for a collection.

For actions of domain services the visibility is dependent upon its
@DomainService#nature() and also on whether it is contributed (as per
@ActionLayoutfficontributedAs()).

3.5. invokeOn()

The invokeOn() attribute indicates whether the an action can be invoked on a single object (the
default) and/or on many objects in a collection.

For example:

27

../rgant/rgant.pdf#_rgant-Property_hidden
../rgant/rgant.pdf#_rgant-Collection_hidden
../rgant/rgant.pdf#_rgant-ActionLayout_hidden
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs

public class ToDoltem {
(invokeOn=InvokeOn.0BJECT_AND_COLLECTION)
public void markAsCompleted() {
setCompleted(true);
}

Actions to be invoked on collection (currently) have a number of constraints. It:

* must take no arguments
» cannot be hidden (any annotations or supporting methods to that effect will be ignored)

» cannot be disabled (any annotations or supporting methods to that effect will be ignored).

The example given above is probably ok, because setCompleted() is most likely idempotent.
However, if the action also called some other method, then we should add a guard.

For example, for this non-idempotent action:

(invokeOn=InvokeOn.0OBJECT AND_COLLECTION)
public void markAsCompleted() {
setCompleted(true);
todoTotalizer.incrementNumberCompleted();

we should instead write it as:

(invokeOn=InvokeOn.0OBJECT _AND_COLLECTION)
public void markAsCompleted() {
if(isCompleted()) {
return;

}
setCompleted(true);
todoTotalizer.incrementNumberCompleted();

0 This attribute has no meaning if annotated on an action of a domain service.

3.6. publishing()

The publishing() attribute determines whether and how an action invocation is published via the
registered implementation of a PublishingService) or PublisherService. This attribute is also
supported for domain objects, where it controls whether changed objects are published as events,
and for @Property#publishing(), where it controls whether property edits are published as events.

28

../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublishingService
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublisherService
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgant/rgant.pdf#_rgant-Property_publishing

A common use case is to notify external "downstream" systems of changes in the state of the Isis
application. The default value for the attribute is AS_CONFIGURED, meaning that the configuration
property isis.services.publish.actions is used to determine the whether the action is published:

e all
all action invocations are published
* ignoreSafe (or ignoreQueryOnly)

invocations of actions with safe (read-only) semantics are ignored, but actions which may
modify data are not ignored

* none

no action invocations are published

If there is no configuration property in isis.properties then publishing is automatically enabled.

This default can be overridden on an action-by-action basis; if publishing() is set to ENABLED then the
action invocation is published irrespective of the configured value; if set to DISABLED then the action
invocation is not published, again irrespective of the configured value.

For example:

public class Order {
(publishing=Publishing.ENABLED) @
public Invoice generateInvoice(...) { ... }

@ because set to enabled, will be published irrespective of the configured value.

3.6.1. publishingPayloadFactory()

The (optional) related publishingPayloadFactory() specifies the class to use to create the (payload of
the) event to be published by the publishing factory.

Rather than simply broadcast that the action was invoked, the payload factory allows a "fatter"
payload to be instantiated that can eagerly push commonly-required information to all subscribers.
For at least some subscribers this should avoid the necessity to query back for additional
information.

Be aware that this attribute is only honoured by the (deprecated)
A PublishingService, so should itself be considered as deprecated. It is ignored by
the replacement PublisherService,

3.7.restrictTo()

By default actions are available irrespective of the deployment mode. The restrictTo() attribute

29

../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublishingService
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublisherService
../rgcfg/rgcfg.pdf#_rgcfg_deployment-types

specifies whether the action should instead be restricted to only available in prototyping mode.

For example:

public class Customer {
public Order placeNewOrder() { ... }
public List<Order> listRecentOrders() { ... }

(restrictTo=RestrictTo.PROTOTYPING)
public List<Order> listAllOrders() { ... }

In this case the listing of all orders (in the 1istAl10rders() action) probably doesn’t make sense for
production; there could be thousands or millions. However, it would be useful to disaply how for a
test or demo system where there are only a handful of orders.

3.8. semantics()

The semantics() attribute describes whether the invocation modifies state of the system, and if so
whether it does so idempotently. If the action invocation does not modify the state of the system, in
other words is safe, then it also can beused to specify whether the results of the action can be
cached automatically for the remainder of the request.

The attribute was originally introduced for the RestfulObjects viewer in order that action
invocations could be using the appropriate HTTP verb (GET, PUT and POST).

The table below summarizes the semantics:

Semantic Changes Effect of multiple calls HTTP verb
state (Restful
Objects)
SAFE_AND_REQUEST_CACHEABLE No Will always return the same result each ~ GET
time invoked (within a given request
scope)
SAFE No Might result in different results each GET
invocation
IDEMPOTENT Yes Will make no further changes if called ~ PUT
IDEMPOTENT _ARE_YOU_SURE multiple times (eg sets a property or adds
to a Set).

The "are you sure" variant requires that
the user must explicitly confirm the
action.

30

../ugvro/ugvro.pdf

Semantic Changes Effect of multiple calls HTTP verb

state (Restful
Objects)
NON_IDEMPOTENT Yes Might change the state of the system each POST
NON_IDEMPOTENT_ARE_YOU_SUR time called (eg increments a counter or
E adds to a List).

The "are you sure” variant requires that
the user must explicitly confirm the
action.

The actions' semantics are also used by the core runtime as part of the in-built concurrency
checkng; invocation of a safe action (which includes request-cacheable) does not perform a
concurrency check, whereas non-safe actions do perform a concurrency check.

For example:

public class Customer {
(semantics=SemanticsOf.SAFE_AND_REQUEST_CACHEABLE)
public CreditRating checkCredit() { ... }

(semantics=SemanticsOf.IDEMPOTENT)
public void changeOfAddress(Address address) { ... }

(semantics=SemanticsOf.NON_IDEMPOTENT)
public Order placeNewOrder() { ... }

Actions that are safe and request-cacheable automatically use the QueryResultsCache service to
cache the result of the method. Note though that the results of this caching will only be apparent if
the action is invoked from another method using the WrapperFactory service.

Continuing the example above, imagine code that loops over a set of Orders where each Order has an
associated Customer. We want to check the credit rating of each Customer (a potentially expensive
operation) but we don’t want to do it more than once per Customer. Invoking through the
WrapperFactory will allow us to accomplish this by exploiting the semantics of checkCredit() action:

31

../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-api_QueryResultsCache
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_WrapperFactory

public void dispatchToCreditWorthyCustomers(final List<Order> orders) {
for(Order order: orders) {

Customer customer = order.getCustomer();

CreditRating creditRating = wrapperFactory.wrapSkipRules(customer).
checkCredit(); @

if(creditRating.isWorthy()) {

order.dispatch();
}

WrapperFactory wrapperFactory;

@ wrap the customer to dispatch.

In the above example we’ve used wrapSkipRules(:-+) but if we wanted to enforce any business rules
associated with the checkCredit() method, we would have used wrap(---).

3.9. type0f()

The type0f() attribute specifies the expected type of an element returned by the action (returning a
collection), when for whatever reason the type cannot be inferred from the generic type, or to
provide a hint about the actual run-time (as opposed to compile-time) type. This attribute can also
be specified for collections.

For example:

public void AccountService {
(typeOf=Customer.class)
public List errantAccounts() {
return customers.allNewCustomers();

}

CustomerRepository customers;

Q In general we recommend that you use generics instead, eg List<Customer>.

32

../rgant/rgant.pdf#_rgant-Collection_typeOf

Chapter 4. @Actionlayout

The @ActionLayout annotation applies to actions, collecting together all Ul hints within a single

annotation.

The table below summarizes the annotation’s attributes.

Table 9. eActionLayout attributes

Attribute

bookmarking()

contributedAs()

cssClass()

cssClassFa()

cssClassFaPosition()

describedAs()

hidden()

named()

position()

For example:

Values (default)

AS_ROOT, NEVER
(NEVER)

AS_BOTH, AS_ACTION,
AS_ASSOCIATION,
AS_NEITHER
(AS_BOTH)

Any string valid as a
CSS class

Any valid Font
awesome icon name

LEFT, RIGHT
(LEFT)

String.

EVERYWHERE, NOWHERE
(NOWHERE)

String.

BELOW, RIGHT, PANEL,
PANEL_DROPDOWN (BELOW)

Description

indicates if an action (with safe action
semantics) is automatically bookmarked.

for a domain service action that can be
contributed, whether to contribute as an action
or as an association (ie a property or collection).
For a domain service action to be contributed,
the domain services must have a nature nature
of either VIEW or VIEW_CONTRIBUTIONS_ONLY, and
the action must have safe action semantics, and
takes a single argument, namely the contributee
domain object.

an additional CSS class around the HTML that
represents for the action, to allow targetted
styling in application.css.

Supported by the Wicket viewer but currently
ignored by the RestfulObjects viewer.

specify a font awesome icon for the action’s
menu link or icon.

Positioning of the icon on the button/menu item.

provides a short description of the action, eg for
rendering as a 'tool tip'.

indicates where (in the UI) the action should be
hidden from the user.

to override the name inferred from the action’s
name in code.

A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

for actions associated (using
@MemberOrder#named()) with properties, the
positioning of the action’s button with respect to
the property

33

../rgant/rgant.pdf#_rgant-ActionLayout_bookmarking
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-ActionLayout_cssClassFa
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_hidden
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-ActionLayout_position
../rgant/rgant.pdf#_rgant-MemberOrder

public class ToDoItems {
@Action(semantics=SemanticsOf.SAFE) @
@ActionLayout(
bookmarking=BookmarkPolicy.AS_ROOT,
cssClass="x-key",
cssClassFa="fa-checkbox",
describedAs="Mark the todo item as not complete after all",
hidden=Where.NOWHERE @

)

@MemberOrder (sequence = "1")
public List<ToDoItem> notYetComplete() {

}

@ required for bookmarkable actions

@ default value, so could be omitted

Q As an alternative to using the @ActionLayout annotation, a file-based layout can be
used (and is generally to be preferred since it is more flexible/powerful).

4.1. bookmarking()

The bookmarking() attribute indicates if an action (with safe action semantics) is automatically
bookmarked. This attribute is also supported for domain objects.

In the Wicket viewer, a link to a bookmarked object is shown in the bookmarks panel:

34

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-DomainObjectLayout_bookmarking
../ugvw/ugvw.pdf

Lol Mow lawn due by 2014-03-27 +

(- localhost:3080/wicket/entity/TODO:L 4

r ~
@ cLearaLL

@ 5 BUYBREAD DUE BY 2014-03-21

O g WOW LAWN DUE BY 2014-03-27

O TODOS NOT YET COMPLETE

IE RECENT CHANGES

Priority
RELATIVE PRIORITY

PRE

DUE BY 27/

Other

COST
ACITLY

UPL

NOTES

ATTACHMENT

o Note that this screenshot shows an earlier version of the Wicket viewer Ul
(specifically, pre 1.8.0).

Q The Wicket viewer supports alt-[as a shortcut for opening the bookmark panel.
Esc will close.

For example:

public class ToDoltems {
(semantics=SemanticsOf.SAFE)
(bookmarking=BookmarkPolicy.AS_ROOT)
(sequence = "1")
public List<ToDoItem> notYetComplete() {

indicates that the notYetComplete() action is bookmarkable.

O The enum value AS_CHILD has no meaning for actions; it relates only to
bookmarked domain objects.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

35

images/reference-annotations/ActionLayout/bookmarking.png
../ugvw/ugvw.pdf
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-DomainObject_bookmarking
../ugvw/ugvw.pdf#_ugvw_layout_file-based

0 FIXME - change to .layout.xml syntax instead.

"notYetComplete": {
"actionLayout": { "bookmarking": "AS_ROOT" }

}

4.2. contributedAs()

For a domain service action that can be contributed, the contributedAs() attribute determines how
it is contributed: as an action or as an association (ie a property or collection).

The distinction between property or collection is automatic: if the action returns a
java.util.Collection (or subtype) then the action is contributed as a collection; otherwise it is
contributed as a property.

For a domain service action to be contributed, the domain services must have a nature nature of
either VIEW or VIEW _CONTRIBUTIONS_ONLY, and the action must have safe action semantics, and takes a
single argument, namely the contributee domain object.

For example:

(nature=NatureOfService.VIEW CONTRIBUTIONS_ONLY)
public class CustomerContributions {
(semantics=SemanticsOf.SAFE)
(contributedAs=Contributed.AS_ASSOCIATION)
public List<Order> mostRecentOrders(Customer customer) { ... }

The @ActionLayout is not required if the action does not have safe semantics, or if
the action takes more than one argument; in these cases the action can only be
contributed as an action.

It’s also possible to use the attribute to suppress the action completely:

(nature=NatureOfService.VIEW)
public class OrderContributions {
(contributedAs=Contributed.AS_NEITHER)
public void cancel(Order order);

In such cases, though, it would probably make more sense to annotate the action as either hidden
or indeed @Programmatic.

36

../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-Action_semantics
../rgant/rgant.pdf#_rgant-Action_hidden
../rgant/rgant.pdf#_rgant-Programmatic

Unlike other @ActionLayout attributes, this attribute cannot be specified using a
file-based layout because it relates to the contributor domain service, not the
contributee domain object.

4.3. cssClass()

The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the action. Application-specific CSS can then be used to target and adjust the
Ul representation of that particular element.

This attribute can also be applied to domain objects, view models, properties, collections and
parameters.

For example:

public class ToDoltem {
@ActionLayout(cssClass="x-key")
public ToDoItem postpone(LocalDate until) { ... }

The similar @ActionLayout#icssClassFa() annotation attribute is also used as a hint
to apply CSS, specifically to add Font Awesome icons on action menu items or
buttons.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"postpone”: {
"actionLayout": { "cssClass": "x-key" }

}

4.4. cssClassFa()

The cssClassFa() attribute is used to specify the name of a Font Awesome icon name, to be
rendered on the action’s representation as a button or menu item. The related
cssClassFaPosition() attribute specifies the positioning of the icon, to the left or the right of the text.

These attributes can also be applied to domain objects and to view models to specify the object’s
icon.

For example:

37

../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClass
../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClassFa
http://fortawesome.github.io/Font-Awesome/icons/
../ugvw/ugvw.pdf#_ugvw_layout_file-based
http://fortawesome.github.io/Font-Awesome/icons/
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassFa
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClassFa

public class ToDoltem {
(

cssClassFa="fa-step-backward"

)
public ToDoItem previous() { ... }

(

cssClassFa="fa-step-forward",
cssClassFaPosition=ActionLayout.CssClassFaPosition.RIGHT

)
public ToDoItem next() { ... }

There can be multiple "fa-" classes, eg to mirror or rotate the icon. There is no need to include the
mandatory fa "marker" CSS class; it will be automatically added to the list. The fa- prefix can also
be omitted from the class names; it will be prepended to each if required.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"previous": {
"actionlLayout": {
"cssClassFa": "fa-step-backward",
"cssClassFaPosition": "LEFT"

Iy
b
"next": {
"actionLayout": {
"cssClassFa": "fa-step-forward",
"cssClassFaPosition": "RIGHT"
}
}

The similar @ActionlLayoutffcssClass() annotation attribute is also used as a hint to
apply CSS, but for wrapping the representation of an object or object member so
that it can be styled in an application-specific way.

4.5. describedAs()

The describedAs() attribute is used to provide a short description of the action to the user. In the
Wicket viewer it is displayed as a 'tool tip'.

This attribute can also be specified for collections, properties, parameters, domain objects and
view models.

For example:

38

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs
../rgant/rgant.pdf#_rgant-ViewModelLayout_describedAs

public class Customer {

@ActionLayout(describedAs="Place a repeat order of the last (most recently placed)
order")

public Order placeRepeatOrder(...) { ... }
}

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"postpone”: {

"actionLayout": { "describedAs": "Place a repeat order of the last (most recently
placed) order" }
}

4.6. hidden()

The hidden() attribute indicates where (in the UI) the action should be hidden from the user. This
attribute can also be applied to properties and collections.

It is also possible to use @Action#hidden() to hide an action at the domain layer.

Q Both options are provided with a view that in the future the view-layer semantics
may be under the control of (expert) users, whereas domain-layer semantics
should never be overridden or modified by the user.

For example:

public class Customer {
@Actionlayout(hidden=Where.EVERYWHERE)
public void updateStatus() { ... }

The acceptable values for the where parameter are:
* Where.EVERYWHERE or Where.ANYWHERE
The action should be hidden at all times.
* Where.NOWHERE

The action should not be hidden.

The other values of the Where enum have no meaning for a collection.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

39

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-PropertyLayout_hidden
../rgant/rgant.pdf#_rgant-CollectionLayout_hidden
../rgant/rgant.pdf#_rgant-Action_hidden
../ugvw/ugvw.pdf#_ugvw_layout_file-based

0 FIXME - change to .layout.xml syntax instead.

"updateStatus": {
"actionLayout": { "hidden": "EVERYWHERE" }

}

For actions of domain services the visibility is dependent upon its
@DomainService#fnature() and also on whether it is contributed (as per
@ActionLayout#contributedAs()).

4.7. named()

The named() attribute explicitly specifies the action’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for collections,
properties, parameters, domain objects, view models and domain services.

Following the don’t repeat yourself principle, we recommend that you only use
Q this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg

"package"), or a name that has punctuation, eg apostrophes.

For example:

public class Customer {
@ActionLayout(named="Get credit rating")
public CreditRating obtainCreditRating() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"obtainCreditRating": {
"actionLayout": { "named": "Get credit rating" }

}

Q The framework also provides a separate, powerful mechanism for
internationalization.

4.8. position()

The position() attribute pertains only to actions that have been associated with properties using
@MemberOrder#named(). For these actions, it specifies the positioning of the action’s button with

40

../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_named
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugbtb/ugbtb.pdf#_ugbtb_i18n
../rgant/rgant.pdf#_rgant-MemberOrder

respect to the field representing the object property.
The attribute can take one of four values: BELOW, RIGHT, PANEL or PANEL _DROPDOWN.

For example:

public class Customer {

@Property(
editing=Editing.DISABLED @
)
public CustomerStatus getStatus() { ... }
public void setStatus(CustomerStatus customerStatus) { ... }

@MemberOrder(
named="status", @)
sequence="1"

)
@ActionLayout(

named="Update", ®
position=Position.BELOW

)
public CreditRating updateStatus(Customer) { ... }

@ indicate the property as read-only, such that it can only be updated using an action
@ associate the "updateStatus" action with the "status" property
® give the action an abbreviated name, because the fact that the "status" property is to be updated

is implied by its positioning

The default is BELOW, which is rendered (by the Wicket viewer) as shown below:

Other
Cost 0.75
$ Update
Location 51.521964:0.1424463

If the action is positioned as RIGHT, then the action’s button is rendered to the right of the property’s
field, in a compact drop-down. This is ideal if there are many actions associated with a property:

41

../ugvw/ugvw.pdf
images/reference-annotations/ActionLayout/position-BELOW.png

Other

Cost 0.75 m.)

Location 51.521964:0.142463 $ Update

If the action is positioned as PANEL, then the action’s button is rendered on the header of the panel
that contains the property:

Cost 0.75

Location 51.521964;0.142443

And finally, if the action is positioned as PANEL_DROPDOWN, then the action’s button is again rendered
on the panel header, but as a drop-down:

Other n

$ Update

Cost 0.75
¥ Update Location

Location 51.521964:0.1424463

If there are multiple actions associated with a single property then the positioning can be mix’ed-
and-match’ed as required. If the PANEL or PANEL_DROPDOWN are used, then (as the screenshots above
show) the actions from potentially multiple properties grouped by that panel will be shown
together.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

ﬁ FIXME - change to .layout.xml syntax instead.

"obtainCreditRating": {
"actionLayout": { "named": "Get credit rating" }

}

The fact that the layout is dynamic (does not require a rebuild/restart) is particularly useful in that
the look-n-feel can be easily experimented with and adjusted.

42

images/reference-annotations/ActionLayout/position-RIGHT.png
images/reference-annotations/ActionLayout/position-PANEL.png
images/reference-annotations/ActionLayout/position-PANEL_DROPDOWN.png
../ugvw/ugvw.pdf#_ugvw_layout_file-based

Chapter 5. @Collection

The @Collection annotation applies to collections collecting together all domain semantics within a
single annotation.

The table below summarizes the annotation’s attributes.

Table 10. @Collection attributes
Attribute Values (default) Description

domainEvent() subtype of the event type to be posted to the
CollectionDomainEvent EventBusService to broadcast the collection’s
(CollectionDomainEvent. business rule checking (hide, disable, validate)

Default) and its modification (before and after).
editing() ENABLED, DISABLED, whether a collection can be added to or
AS_CONFIGURED removed from within the UI
(AS_CONFIGURED)
editingDisabledReason(String value if editing() is DISABLED, provides a reason as to
why.
hidden() EVERYWHERE, indicates where (in the UI) the collection should
OBJECT_FORMS, NOWHERE be hidden from the user.
(NOWHERE)
notPersisted() true, false whether to exclude from snapshots.
(false) [WARNING] ==== Collection must also be
annotated with

@javax.jdo.annotations.NotPersistent in order
to not be persisted. ====

type0f() hints as to the run-time type of the objects
within that collection (as a fallback)

For example:

public class ToDoltem {
public static class DependenciesChangedEvent
extends CollectionDomainEvent<ToDoItem, ToDoItem> { } @
(

domainEvent=DependenciesChangedEvent.class,
editing = Editing.ENABLED,
hidden = Where.NOWHERE,
notPersisted = false,
typeOf = ToDoItem.class

®Oe

)
public SortedSet<ToDoItem> getDependencies() { ... }

@ can use no-arg constructor.

43

../rgant/rgant.pdf#_rgant-Collection_domainEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-Collection_editing
../rgant/rgant.pdf#_rgant-Collection_hidden
../rgant/rgant.pdf#_rgant-Collection_notPersisted
../rgant/rgant.pdf#_rgant-Collection_typeOf

@ default value, so could be omitted
® default value, so could be omitted

@ default value, so could be omitted

The annotation is one of a handful (others including @CollectionLayout, @Property

Q and @PropertylLayout) that can also be applied to the field, rather than the getter
method. This is specifically so that boilerplate-busting tools such as Project
Lombok can be used.

5.1. domainEvent()

Whenever a domain object (or list of domain objects) is to be rendered, the framework fires off
multiple domain events for every property, collection and action of the domain object. In the cases
of the domain object’s collections, the events that are fired are:

* hide phase: to check that the collection is visible (has not been hidden)

disable phase: to check that the collection is usable (has not been disabled)

validate phase: to check that the collection’s arguments are valid (to add or remove an element)
» pre-execute phase: before the modification of the collection
* post-execute: after the modification of the collection

Subscribers subscribe through the EventBusService using either Guava or Axon Framework
annotations and can influence each of these phases.

The Wicket viewer does not currently support the modification of collections;
they are rendered read-only. However, domain events are still relevant to
A determine if such collections should be hidden.

The workaround is to create add/remove actions and use UI hints to render them
close to the collection.

By default the event raised is CollectionDomainEvent.Default. For example:

public class ToDoltem {

0
public SortedSet<ToDoItem> getDependencies() { ... }

The domainEvent() attribute allows a custom subclass to be emitted allowing more precise
subscriptions (to those subclasses) to be defined instead. This attribute is also supported for actions
and properties.

For example:

44

../rgant/rgant.pdf#_rgant-CollectionLayout
../rgant/rgant.pdf#_rgant-Property
../rgant/rgant.pdf#_rgant-PropertyLayout
https://projectlombok.org/
https://projectlombok.org/
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
https://github.com/google/guava
http://www.axonframework.org/
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-MemberOrder
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent

public class ToDoltem {
public static class DependenciesChangedEvent
extends CollectionDomainEvent<ToDoItem, ToDoItem> { } @

(

domainEvent=DependenciesChangedEvent.class

)
public SortedSet<ToDoItem> getDependencies() { ... }

@ inherit from CollectionDomainEvent<T,E> where T is the type of the domain object being
interacted with, and E is the type of the element in the collection (both ToDoItem in this example)

The benefit is that subscribers can be more targetted as to the events that they subscribe to.

The framework provides a no-arg constructor and will initialize the domain event

o using (non-API) setters rather than through the constructor. This substantially
reduces the boilerplate in the subclasses because no explicit constructor is
required..

5.1.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava APIL

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):
(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {

.google.common.eventbus.Subscribe
public void on(CollectionDomainEvent ev) {

}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.DependenciesChangedEvent ev) {

}

45

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

The subscriber’s method is called (up to) 5 times:

* whether to veto visibility (hide)

* whether to veto usability (disable)

» whether to veto execution (validate) the element being added to/removed from the collection
* steps to perform prior to the collection being added to/removed from

* steps to perform after the collection has been added to/removed from.

The subscriber can distinguish these by calling ev.getEventPhase(). Thus the general form is:

@Programmatic
@com.google.common.eventbus.Subscribe
public void on(CollectionDomainEvent ev) {
switch(ev.getEventPhase()) {
case HIDE:
// call ev.hide() or ev.veto("") to hide the collection
break;
case DISABLE:
// call ev.disable("...") or ev.veto("...") to disable the collection
break;
case VALIDATE:
// call ev.invalidate("...") or ev.veto("...")
// if object being added/removed to collection is invalid
break;
case EXECUTING:
break;
case EXECUTED:
break;

It is also possible to abort the transaction during the executing or executed phases by throwing an
exception. If the exception is a subtype of RecoverableException then the exception will be rendered
as a user-friendly warning (eg Growl/toast) rather than an error.

5.1.2. Default, Doop and Noop events

If the domainEvent attribute is not explicitly specified (@is left as its default wvalue,
CollectionDomainEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.collectionAnnotation.domainEvent.postForDefault configuration collection
can be set to "false"; this will disable posting.

46

On the other hand, if the domainEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides CollectionDomainEvent.Doop as such a subclass, so setting
the domainEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration collection setting.

And, conversely, the framework also provides CollectionDomainEvent.Noop; if domainEvent attribute is
set to this class, then no event will be posted.

5.1.3. Raising events programmatically

Normally events are only raised for interactions through the UL However, events can be raised
programmatically either by calling the EventBusService API directly, or by emulating the UI by
wrapping the target object using the WrapperFactory domain service.

5.2. editing()

The editing() annotation indicates whether a collection can be added to or removed from within
the UI. This attribute can also be specified for properties, and can also be specified for the domain
object

The related editingDisabledReason() attribute specifies the a hard-coded reason why the collection
cannot be modified directly.

The Wicket viewer does not currently support the modification of collections;
; they are rendered read-only.

The workaround is to create add/remove actions and use UI hints to render them
close to the collection.

Whether a collection is enabled or disabled depends upon these factors:
* whether the domain object has been configured as immutable through the
@DomainObject#editing() attribute

* else (that is, if the domain object’s editability is specified as being AS_CONFIGURED), then the value
of the configuration property isis.objects.editing. If set to false, then the object’s collections
(and properties) are not editable

* else, then the value of the @Collection(editing="-+) attribute itself.

* else, the result of invoking any supporting disable::-() supporting methods

Thus, to make a collection read-only even if the object would otherwise be editable, use:

47

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_WrapperFactory
../rgant/rgant.pdf#_rgant-Property_editing
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgant/rgant.pdf#_rgant-DomainObject_editing
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-MemberOrder
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable

public class ToDoltem {

(
editing=Editing.DISABLED,
editingDisabledReason="Use the add and remove actions to modify"

)
public SortedSet<ToDoItem> getDependencies() { ... }

O To reiterate, it is not possible to enable editing for a collection if editing has been
disabled at the object-level.

5.3. hidden()

Collections can be hidden at the domain-level, indicating that they are not visible to the end-user.
This attribute can also be applied to actions and properties.

It is also possible to use @CollectionLayout#hidden() or using file-based layout
such that the collection can be hidden at the view layer. Both options are

Q provided with a view that in the future the view-layer semantics may be under
the control of (expert) users, whereas domain-layer semantics should never be
overridden or modified by the user.

For example:

public class Customer {
(where=Where.EVERYWHERE)
public SortedSet<Address> getAddresses() { ... }

The acceptable values for the where parameter are:
* Where.EVERYWHERE or Where.ANYWHERE
The collection should be hidden everywhere.
* Where.ANYWHERE
Synonym for everywhere.
e Where.OBJECT_FORMS
The collection should be hidden when displayed within an object form.
* Where.NOWHERE

The collection should not be hidden.

48

../rgant/rgant.pdf#_rgant-Action_hidden
../rgant/rgant.pdf#_rgant-Property_hidden
../rgant/rgant.pdf#_rgant-CollectionLayout_hidden
../ugvw/ugvw.pdf#_ugvw_layout_file-based

The other values of the Where enum have no meaning for a collection.

The Wicket viewer suppresses collections when displaying lists of objects.

o The RestfulObjects viewer by default suppress collections when rendering a
domain object.

5.4. notPersisted()

The (somewhat misnamed) notPersisted() attribute indicates that the collection should be excluded
from any snapshots generated by the XmlSnapshotService. This attribute is also supported for
properties.

This annotation does not specify that a collection is not persisted in the
A JDO/DataNucleus objectstore. See below for details as to how to additionally
annotate the collection for this.

For example:

public class Customer {
(notPersisted=true)
public SortedSet<Order> getPreviousOrders() {...}
public void setPreviousOrder(SortedSet<Order> previousOrders) {...}

Historically this annotation also hinted as to whether the collection’s contents should be persisted
in the object store. However, the J]DO/DataNucleus objectstore does not recognize this annotation.
Thus, to ensure that a collection is actually not persisted, it should also be annotated with
@javax.jdo.annotations.NotPersistent.

For example:

public class Customer {
(notPersisted=true) O)
.jdo.annotations.NotPersistent @
public SortedSet<Order> getPreviousOrders() {...}
public void setPreviousOrder(SortedSet<Order> previousOrders) {...}

@ ignored by Apache Isis
@ ignored by JDO/DataNucleus

Alternatively, if the collection is derived, then providing only a "getter" will also work:

49

../ugvw/ugvw.pdf
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_XmlSnapshotService
../rgant/rgant.pdf#_rgant-Property_notPersisted

public class Customer {
public SortedSet<Order> getPreviousOrders() {...}

5.5. type0f()

The type0Of() attribute specifies the expected type of an element contained within a collection when
for whatever reason the type cannot be inferred from the generic type, or to provide a hint about
the actual run-time (as opposed to compile-time) type. This attribute can also be specified for
actions.

For example:

public void Customer {
(Order.class)
public SortedSet getOutstandingOrders() { ... }

Q In general we recommend that you use generics instead, eg SortedSet<Order>.

50

../rgant/rgant.pdf#_rgant-Action_typeOf

Chapter 6. @CollectionLayout

The @CollectionLayout annotation applies to collections, collecting together all UI hints within a
single annotation. It is also possible to apply the annotation to actions of domain services that are

acting as contributed collections.

The table below summarizes the annotation’s attributes.

Table 11. @Collectionlayout attributes

Attribute Values (default)

cssClass() Any string valid as a
CSS class

defaultView() table, excel, calendar,
map, ...

describedAs() String.

hidden() EVERYWHERE,
OBJECT_FORMS, NOWHERE
(NOWHERE)

named() String.

namedEscaped() true,false (true)

paged() Positive integer

render () EAGERLY, LAZILY
(LAZILY)

sortedBy() Subclass of

java.util.Comparator
for element type

For example:

Description

the css class that a collection should have, to
allow more targetted styling in application.css

Which view is selected by default, if multiple
views are available. See the (non-ASF) Incode
Platform for further Wicket components
providing views.

description of this collection, eg to be rendered
in a tooltip.

indicates where (in the UI) the collection should
be hidden from the user.

to override the name inferred from the
collection’s name in code.

A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

whether to HTML escape the name of this
property.

the page size for instances of this class when
rendered within a table.

whether the collection should be (eagerly)
rendered open or (lazily) rendered closed

indicates that the elements in the
java.util.SortedSet collection should be sorted
according to a specified Comparator rather than
their natural sort order.

51

../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-CollectionLayout_defaultView
http://platform.incode.org
http://platform.incode.org
../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-CollectionLayout_hidden
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_paged
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../rgant/rgant.pdf#_rgant-CollectionLayout_sortedBy

public class ToDoltem {

@CollectionLayout(
cssClass="x-key",
named="Todo items that are <i>dependencies</i> of this item.",
namedEscaped=false,
describedAs="0ther todo items that must be completed before this one",
labelPosition=LabelPosition.LEFT,
render=EAGERLY)

public SortedSet<ToDoItem> getDependencies() { ... }

Q As an alternative to using the @CollectionlLayout annotation, a file-based layout
can be used (and is generally to be preferred since it is more flexible/powerful).

The annotation is one of a handful (others including @Collection, @Property and

Q @PropertylLayout) that can also be applied to the field, rather than the getter
method. This is specifically so that boilerplate-busting tools such as Project
Lombok can be used.

6.1. cssClass()

The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the collection. Application-specific CSS can then be used to target and adjust
the Ul representation of that particular element.

This attribute can also be applied to domain objects, view models, actions, properties and
parameters.

For example:

public class ToDoltem {
@CollectionLayout(
cssClass="x-important"

)
public SortedSet<ToDoItem> getDependencies() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

52

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Collection
../rgant/rgant.pdf#_rgant-Property
../rgant/rgant.pdf#_rgant-PropertyLayout
https://projectlombok.org/
https://projectlombok.org/
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../ugvw/ugvw.pdf#_ugvw_layout_file-based

"dependencies": {
"collectionLayout": { "cssClass": "x-important” }

}

6.2. defaultView()

The Wicket viewer allows additional views to be configured to render collections of objects; at the
time of writing thesee include the excel, fullcalendar2 and gmap3 provided by the (non-ASF) Incode
Platform. If the objects to be rendered have the correct "shape”, then the appropriate view will be
made available. For example, objects with a date can be rendered using calendar; objects with
locations can be rendered using map.

The defaultView() attribute is used to select which of these views should be used by default for a
given collection.

For example:

public class BusRoute {
(

defaultView="map"

)
public SortedSet<BusStop> getStops() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"dependencies": {
"collectionlLayout": {
"defaultView": "map

}

This attribute takes precedence over any value for the @CollectionlLayout#render()
attribute. For example, if the defaultView attribute is defined to "table", then the
table will be show even if render is set to LAZILY.

6.3. describedAs()

The describedAs() attribute is used to provide a short description of the collection to the user. In
the Wicket viewer it is displayed as a 'tool tip'.

The describedAs() attribute can also be specified for properties, actions, parameters, domain

53

../ugvw/ugvw.pdf
http://platform.incode.org
http://platform.incode.org
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-CollectionLayout_render
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs

objects and view models.
For example:
public class ToDoltem {

@CollectionLayout(
describedAs="0ther todo items that must be completed before this one"

)
public SortedSet<ToDoItem> getDependencies() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

6 FIXME - change to .layout.xml syntax instead.

"dependencies": {
"collectionLayout": {
"describedAs": "Other todo items that must be completed before this one"

}

6.4. hidden()

The hidden() attribute indicates where (in the UI) the collection should be hidden from the user.
This attribute can also be applied to actions and properties.

It is also possible to use @Collection#hidden() to hide an action at the domain

Q layer. Both options are provided with a view that in the future the view-layer
semantics may be under the control of (expert) users, whereas domain-layer
semantics should never be overridden or modified by the user.

For example:

public class ToDoltem {
@CollectionLayout(
hidden=Where.EVERYWHERE
public SortedSet<ToDoItem> getDependencies() { ... }

The acceptable values for the where parameter are:
* Where.EVERYWHERE or Where.ANYWHERE

The collection should be hidden everywhere.

54

../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs
../rgant/rgant.pdf#_rgant-ViewModelLayout_describedAs
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ActionLayout_hidden
../rgant/rgant.pdf#_rgant-PropertyLayout_hidden
../rgant/rgant.pdf#_rgant-Collection_hidden

* Where.ANYWHERE

Synonym for everywhere.
* Where.OBJECT_FORMS

The collection should be hidden when displayed within an object form.
* Where.NOWHERE

The collection should not be hidden.

The other values of the Where enum have no meaning for a collection.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"dependencies”: {
"collectionLayout": { "hidden": "EVERYWHERE" }

}

6.5. named()

The named() attribute explicitly specifies the collection’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for actions,
properties, parameters, domain objects, view models and domain services.

Following the don’t repeat yourself principle, we recommend that you only use

Q this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

By default the name is HTML escaped. To allow HTML markup, set the related namedEscaped()
attribute to false.

For example:

public class ToDoltem {
@CollectionLayout(
named="Todo items that are <i>dependencies</i> of this item",
namedEscaped=false

)
public SortedSet<ToDoItem getDependencies() { ... }

55

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_named
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"dependencies": {
"collectionLayout": {
"named": "Todo items that are <i>dependencies</i> of this item",
"namedEscaped": false,

Q The framework also provides a separate, powerful mechanism for
internationalization.

6.6. paged()

The paged() attribute specifies the number of rows to display in a (parented) collection. This
attribute can also be applied to domain objects and view models.

The RestfulObjects viewer currently does not support paging. The Wicket viewer
does support paging, but note that the paging is performed client-side rather than

A server-side.

We therefore recommend that large collections should instead be modelled as
actions (to allow filtering to be applied to limit the number of rows).

For example:

public class Order {
@CollectionlLayout(paged=15)
public SortedSet<OrderLine> getDetails() {...}

It is also possible to specify a global default for the page size of standalone collections, using the
configuration property isis.viewer.paged.parented.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"details": {
"collectionLayout": {
"paged": 15
}
}

56

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugbtb/ugbtb.pdf#_ugbtb_i18n
../rgant/rgant.pdf#_rgant-DomainObjectLayout_paged
../rgant/rgant.pdf#_rgant-ViewModelLayout_paged
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../ugvw/ugvw.pdf#_ugvw_layout_file-based

6.7. render()

The render() attribute specifies that the collection be rendered either "eagerly" (shown open,
displaying its contents) or "lazily" (shown closed, hiding its contents). The terminology here is based
on the similar concept of lazy loading of collections in the domain/persistence layer boundary
(except that the rendering relates to the presentation/domain layer boundary).

For example:

public class Order {
(render=RenderType.EAGERLY)
public SortedSet<LineItem> getDetails() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"details": {
"collectionlLayout": {
"render": "EAGERLY"

}

Note that contributed collections (which, under the covers are just action
invocations against a domain service) are always rendered eagerly.

i

Also, if a @CollectionLayoutfidefaultView() attribute has been specified then that
will take precedence over the value of the render () attribute.

6.8. sortedBy()

The sortedBy() attribute specifies that the collection be ordered using the specified comparator,
rather than the natural ordering of the entity (as would usually be the case).

For example:

57

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugfun/ugfun.pdf#_ugfun_how-tos_contributed-members
../rgant/rgant.pdf#_rgant-CollectionLayout_defaultView

public class ToDoItem implements Comparable<ToDoItem> {
public static class DependenciesComparator
implements Comparator<ToDoItem> {

® O

public int compare(ToDoItem p, ToDoItem q) {
return ORDERING_BY_DESCRIPTION ©)
.compound(Ordering.<ToDoItem>natural())
.compare(p, q);

(sortedBy=DependenciesComparator.class) @
public SortedSet<ToDoItem> getDependencies() { ... }

@ the class has a natural ordering (implementation not shown)
@ declaration of the comparator class

® ordering defined as being by the object’s description property (not shown), and then by the
natural ordering of the class

@ specify the comparator to use

When the dependencies collection is rendered, the elements are sorted by the description property
first:

. !
,_1 0 SIMILAR T CLONE DELETE

Dependencies ADD REMOVE @ ¥ E

RELATED OBJECT DESCRIFTION CATEGORY COMPLETE COST DUE BY ATTACHMENT

@ PicKU.. FICK UP LAUNDRY DOMESTIC 750 16-06-2013

@ SHARPE... SHARPEM KNIVES DOMESTIC 24-06-2013

Similar ltems I
o Note that this screenshot shows an earlier version of the Wicket viewer Ul

(specifically, pre 1.8.0).

Without this annotation, the order would have been inverted (because the natural ordering places
items not completed before those items that have been completed.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

c FIXME - change to .layout.xml syntax instead.

images/reference-annotations/CollectionLayout/sortedby-dependencies.png
../ugvw/ugvw.pdf
../ugvw/ugvw.pdf#_ugvw_layout_file-based

"dependencies": {
"collectionLayout”: {
"sortedBy": "com.mycompany.myapp.dom.ToDoItem.DependenciesComparator"

}

59

Chapter 7. @Column (javax. jdo)

The JDO @javax.jdo.annotation.Column provides metadata describing how JDO/DataNucleus should
persist the property to a database RDBMS table column (or equivalent concept for other persistence
stores).

Apache Isis also parses and interprets this annotation in order to build up aspects of its metamodel.

Isis parses the @Column annotation from the Java source code; it does not query the
JDO metamodel. This means that it the @Column annotation must be used rather
than the equivalent <column> XML metadata.

i

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

This section identifies which attributes of @Column are recognized and used by Apache Isis.

7.1. Nullability

The allowsNull() attribute is used to specify if a property is mandatory or is optional.

For example:

public class Customer {
.jdo.annotations.Column(allowsNull="true")
public String getMiddleInitial() { ... }
public void setMiddleInitial(String middleInitial) { ... }

Isis also provides @Property#optionality() attribute. If both are specified, Apache Isis will check
when it initializes for any contradictions, and will fail-fast with an appropriate error message in the
log if there are.

You should also be aware that in the lack of either the @Column#allowsNull() or the
@Property#optionality() attributes, that the J]DO and Apache Isis defaults differ. Apache Isis rule is
straight-forward: properties are assumed to be required. JDO on the other hand specifies that only
primitive types are mandatory; everything else is assumed to be optional. Therefore a lack of
either annotation can also trigger the fail-fast validation check.

In the vast majority of cases you should be fine just to add the @Column#allowsNull() attribute to the
getter. But see the documentation for @Property#optionality() attribute for discussion on one or
two minor edge cases.

7.2. Length for Strings

The length() attribute is used to specify the length of java.lang.String property types as they map
to varchar(n) columns.

60

http://www.datanucleus.org/products/accessplatform_4_0/jdo/orm/schema_mapping.html
../rgant/rgant.pdf#_rgant-Property_optionality
../rgant/rgant.pdf#_rgant-Property_optionality

For example:

public class Customer {

.jdo.annotations.Column(length=20)

public String getFirstName() { ... }

public void setFirstName(String firstName) { ... }
.jdo.annotations.Column(allowsNull="true", length=1)

public String getMiddleInitial() { ... }

public void setMiddleInitial(String middleInitial) { ... }
.jdo.annotations.Column(length=30)

public String getlLastName() { ... }

public void setlLastName(String lastName) { ... }

Isis also provides @Property#fmaxLength() attribute. If both are specified, Apache Isis will check
when it initializes for any contradictions, and will fail-fast with an appropriate error message in the
log if there are.

7.3. Length/scale for BigDecimals

The length() and scale() attributes are used to infer the precision/scale of java.math.BigDecimal
property types as they map to decimal(n,p) columns.

For example:

public class Customer {
.jdo.annotations.Column(length=10, scale=2)
public BigDecimal getTotalOrdersToDate() { ... }
public void setTotalOrdersToDate(BigDecimal totalOrdersToDate) { ... }

For <code>BigDecimal</code>s it is also possible to specify the <code>@Digits</code> annotation, whose form is
<code>@Digits(integer, fraction)</code>. There is a subtle difference here: while
<code>@Columni#scale()</code> corresponds to <code>@Digits#fraction()</code>, the value of
<code>@Column#length()</code> (ie the precision) is actually the _sum of the
<code>@Digits’ "integer()</code> and <code>fraction()</code> parts.

If both are specified, Apache Isis will check when it initializes for any contradictions, and will fail-
fast with an appropriate error message in the log if there are.

7.4. Hints and Tips

This seems to be a good place to describe some additional common mappings that use @Column.
Unlike the sections above, the attributes specified in these hints and tips aren’t actually part of
Apache Isis metamodel.

61

../rgant/rgant.pdf#_rgant-Property_maxLength

7.4.1. Mapping foreign keys

The name() attribute can be used to override the name of the column. References to other objects
are generally mapped as foreign key columns. If there are multiple references to a given type, then
you will want to override the name that JDO/DataNucleus would otherwise default.

For example (taken from estatio app):

public class PartyRelationship {
(name = "fromPartyId", allowsNull = "false")
public Party getFrom() { ... }
public void setFrom(Party from) { ... }
(name = "toPartyId", allowsNull = "false")
public Party getTo() { ... }
public void setTo(Party to) { ... }

7.5. Mapping Blobs and (Clobs

Isis provides custom value types for Blobs and Clobs. These value types have multiple internal
fields, meaning that they corresponding to multiple columns in the database. Mapping this
correctly requires using @Column within JDO’s @Persistent annotation.

For example, here’s how to map a Blob (taken from (non-ASF) Isis addons' todoapp):

private Blob attachment;

.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
.jdo.annotations.Column(name = "attachment_name"),
.jdo.annotations.Column(name = "attachment_mimetype"),
.jdo.annotations.Column(name = "attachment_bytes", jdbcType = "BLOB",

sqlType = "LONGVARBINARY")

b
(
domainEvent = AttachmentDomainEvent.class,
optionality = Optionality.OPTIONAL
)

public Blob getAttachment() { ... }
public void setAttachment(Blob attachment) { ... }

And here’s how to map a Clob (also taken from the todoapp):

62

http://github.com/estatio/estatio
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Blob
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Clob
http://github.com/isisaddons/isis-app-todoapp

private Clob doc;

@javax.jdo.annotations.Persistent(defaultFetchGroup="false", columns = {
@javax.jdo.annotations.Column(name = "doc_name"),
@javax.jdo.annotations.Column(name = "doc_mimetype"),
@javax.jdo.annotations.Column(name = "doc_chars", jdbcType = "CLOB", sqlType =

"LONGVARCHAR")

b
@Property(

optionality = Optionality.OPTIONAL
)

public Clob getDoc() { ... }
public void setDoc(final Clob doc) { ... }

63

Chapter 8. @Digits (javax)

The @javax.validation.constraints.Digits annotation is recognized by Apache Isis as a means to
specify the precision for properties and action parameters of type java.math.BigDecimal.

For example (taken from the (non-ASF) Isis addons' todoapp):

.jdo.annotations.Column(

scale=2 ®
)
.validation.constraints.Digits(
integer=10,
fraction=2)
)

public BigDecimal getCost() {
return cost;

}
public void setCost(final BigDecimal cost) {

this.cost = cost!=null
? cost.setScale(2, BigDecimal.ROUND_HALF_EVEN) ®

:null;

@ the @Columnitscale() attribute must be ...
@ ... consistent with @Digits#fraction()

® the correct idiom when setting a new value is to normalized to the correct scale

64

http://github.com/isisaddons/isis-app-todoapp
../rgant/rgant.pdf#_rgant-Column

Chapter 9. @Discriminator (javax.jdo)

The @javax.jdo.annotation.Discriminator is used by JDO/DataNucleus to specify how to discriminate
between subclasses of an inheritance hierarchy.

It is valid to add a @Discriminator for any class, even those not part of an explicitly mapped
inheritance hierarchy. Apache Isis also checks for this annotation, and if present will use the
@Discriminator#value() as the object type, a unique alias for the object’s class name.

Isis parses the @Discriminator annotation from the Java source code; it does not
query the JDO metamodel. This means that it the @Discriminator annotation must
be used rather than the equivalent <discriminator> XML metadata.

i

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

This value is used internally to generate a string representation of an objects identity (the 0id). This
can appear in several contexts, including:

* as the value of Bookmark#igetObjectType() and in the toString() value of Bookmark (see
BookmarkService)

* and thus in the "table-of-two-halves" pattern, as per the (non-ASF) Incode Platform's poly
module

* in the serialization of 0idDto in the command and interaction schemas
* in the URLs of the RestfulObjects viewer
¢ in the URLs of the Wicket viewer (in general and in particular if copying URLSs)

* in XML snapshots generated by the XmlSnapshotService

9.1. Examples

For example:

.jdo.annotations.Discriminator(value="custmgmt.Customer")
public class Customer {

}

has an object type of custmgmt.Customer.

9.2. Precedence

The rules of precedence for determining a domain object’s object type are:

65

http://www.datanucleus.org/products/accessplatform_4_0/jdo/orm/inheritance.html
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
http://platform.incode.org
../rgcms/rgcms.pdf#_rgcms_schema-cmd
../rgcms/rgcms.pdf#_rgcms_schema-ixn
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf
../ugvw/ugvw.pdf#_ugvw_features_hints-and-copy-url
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_XmlSnapshotService

66

@Discriminator

@DomainObject#objectType

@PersistenceCapable, if at least the schema attribute is defined.

If both schema and table are defined, then the value is “schema.table”. If only schema is defined,
then the value is “schema.className”.

Fully qualified class name of the entity.

This might be obvious, but to make explicit: we recommend that you always
specify an object type for your domain objects.

Q Otherwise, if you refactor your code (change class name or move package), then
any externally held references to the OID of the object will break. At best this will
require a data migration in the database; at worst it could cause external clients
accessing data through the Restful Objects viewer to break.

If the object type is not unique across all domain classes then the framework will
o fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

../rgant/rgant.pdf#_rgant-Discriminator
../rgant/rgant.pdf#_rgant-PersistenceCapable
../ugvro/ugvro.pdf

Chapter 10. @Domain0Object

The @DomainObject annotation applies to domain objects, collecting together all domain semantics
within a single annotation.

The table below summarizes the annotation’s attributes.

Table 12. @DomainObject attributes

Attribute

auditing()

autoCompleteRepository

O

Values (default)

AS_CONFIGURED, ENABLED,
DISABLED
(AS_CONFIGURED)

Domain service class

Description

indicates whether each of the changed
properties of an object should be submitted to
the registered AuditingService (deprecated) or
(its replacement) AuditerService

nominate a method on a domain service to be
used for looking up instances of the domain
object

autoCompleteAction() Method name override the method name to use on the auto-
(autoComplete()) complete repository
bounded() true, false Whether the number of instances of this domain
(false) class is relatively small (a "bounded" set), such
that instances could be selected from a drop-
down list box or similar.
created- subtype of the event type to be posted to the
LifecycleEvent() ObjectCreatedEvent EventBusService whenever an instance is created
(ObjectCreatedEvent.Def
ault)
editing() AS_CONFIGURED, ENABLED, whether the object’s properties and collections
DISABLED can be edited or not (ie whether the instance
(AS_CONFIGURED) should be considered to be immutable)
mixinMethod() Method name within ~ How to recognize the "reserved” method name,
the mixin meaning that the mixin’s own name will be
inferred from the mixin type. Typical examples
are "exec", "execute", "invoke", "apply" and so
on. The default "reserved" method name is $$.
nature() NOT_SPECIFIED, whether the domain object logically is an entity
JDO_ENTITY, (part of the domain layer) or is a view model
EXTERNAL_ENTITY, (part of the application layer); or is a mixin. If
INMEMORY_ENTITY, MIXIN, an entity, indicates how its persistence is
VIEW MODEL managed.
(NOT_SPECIFIED)
objectType() (none, which implies specify an alias for the domain class used to
fully qualified class uniquely identify the object both within the
name) Apache Isis runtime and externally

67

../rgant/rgant.pdf#_rgant-DomainObject_auditing
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_AuditingService
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_AuditerService
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository
../rgant/rgant.pdf#_rgant-DomainObject_bounded
../rgant/rgant.pdf#_rgant-DomainObject_createdLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_createdLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_createdLifecycleEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgant/rgant.pdf#_rgant-DomainObject_mixinMethod
../rgant/rgant.pdf#_rgant-DomainObject_nature
../rgant/rgant.pdf#_rgant-DomainObject_objectType

Attribute

persisted-
LifecycleEvent()

persisting-
LifecycleEvent()

publishing()

publishing-
PayloadFactory()

removing-
LifecycleEvent()

updated-
LifecycleEvent()

updating-
LifecycleEvent()

For example:

@DomainObject(

Values (default)

subtype of

ObjectPersistedEvent
(ObjectPersistedEvent.D

efault)

subtype of

ObjectPersistingEvent
(ObjectPersistingEvent.

Default)

AS_CONFIGURED, ENABLED,

DISABLED
(AS_CONFIGURED)

subtype of

PublishingPayloadFacto
ry- ForObject (none)

subtype of

ObjectRemovingEvent
(ObjectRemovingEvent.De

fault)

subtype of

ObjectUpdatedEvent
(ObjectUpdatedEvent.Def

ault)

subtype of

ObjectUpdatingEvent

Description

the event type to be posted to the
EventBusService whenever an instance has just
been persisted

the event type to be posted to the
EventBusService whenever an instance is about
to be persisted

whether changes to the object should be
published to the registered PublishingService.

specifies that a custom implementation of
PublishingPayloadFactoryForObject be used to
create the (payload of the) published event
representing the change to the object

the event type to be posted to the
EventBusService whenever an instance is about
to be deleted

the event type to be posted to the
EventBusService whenever an instance has just
been updated

the event type to be posted to the
EventBusService whenever an instance is about

(ObjectUpdatingEvent.De to be updated

fault)

auditing=Auditing.ENABLED,
autoCompleteRepository=CustomerRepository.class
editing=Editing.ENABLED,
updatedLifecycleEvent=Customer.UpdatedEvent.class

)

public class Customer {

}

@ default value, so could be omitted

68

../rgant/rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistedLifecycleEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_persistingLifecycleEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObject_publishing
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublishingService
../rgant/rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_removingLifecycleEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatedLifecycleEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
../rgant/rgant.pdf#_rgant-DomainObject_updatingLifecycleEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

10.1. auditing()

The auditing() attribute indicates that if the object is modified, then each of its changed properties
should be submitted to the AuditingService (if one has been configured), or to any

The default value for the attribute is AS_CONFIGURED, meaning that the configuration property
isis.services.audit.objects is used to determine the whether the action is audited:

° all
all changed properties of objects are audited
* none

no changed properties of objects are audited

If there is no configuration property in isis.properties then auditing is automatically enabled for
domain objects.

This default can be overridden on an object-by-object basis; if auditing() is set to ENABLED then
changed properties of instances of the domain class are audited irrespective of the configured
value; if set to DISABLED then the changed properties of instances are not audited, again irrespective
of the configured value.

For example:

(
auditing=Auditing.ENABLED @

)

public class Customer {
}

@ because set to enabled, will be audited irrespective of the configured value.

10.2. autoCompleteRepository()

The autoCompleteRepository() attribute nominates a single method on a domain service as the
fallback means for looking up instances of the domain object using a simple string.

For example, this might search for a customer by their name or number. Or it could search for a
country based on its ISO-3 code or user-friendly name.

If you require additional control - for example restricting the returned results
based on the object being interacted with - then use the autoComplete:-:()

supporting method instead.

For example:

69

../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_AuditingService
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete

(

autoCompleteRepository=CustomerRepository.class

)

public class Customer {

}

where:

public class CustomerRepository {
List<Customer> autoComplete(String search); @

@ is assumed to be called "autoComplete", and accepts a single string

10.2.1. autoCompleteAction()

As noted above, by default the method invoked on the repository is assumed to be called
"autoComplete". The optional autoCompleteAction() attribute allows the method on the repository
to be overridden.

For example:

(
autoCompleteRepository=Customers.class,
autoCompleteAction="findByName"

)

public class Customer {

}

where in this case findByName might be an existing action already defined:

(natureOfService=VIEW_MENU_ONLY)
public class Customers {
(semantics=SemanticsOf.SAFE)
public List<Customer> findByName(
(minLength=3) ©)
(named="name")
String name);

@ end-user must enter minimum number of characters to trigger the query

70

The autocomplete action can also be a regular method, annotated using @Programmatic:

(natureOfService=VIEW _MENU ONLY)
public class Customers {

public List<Customer> findByName(
(minLength=3)
String name);

The method specified must be an action, that is, part of the Isis metamodel. Said
another way: it must not be annotated with @Programmatic. However, it can be

o hidden or placed on a domain service with nature of DOMAIN, such that the action
would not be rendered otherwise in the Ul. Also, the action cannot be restricted
to prototyping only.

10.3. bounded()

Some domain classes are immutable to the user, and moreover have only a fixed number of
instances. Often these are "reference" ("standing") data, or lookup data/pick lists. Typical examples
could include categories, countries, states, and tax or interest rate tables.

Where the number of instances is relatively small, ie bounded, then the bounded() attribute can be
used as a hint. For such domain objects the framework will automatically allow instances to be
selected; Wicket viewer displays these as a drop-down list.

For example:

(

bounded=true,
editing=Editing.DISABLED @
)

public class Currency {
¥

@ This attribute is commonly combined with editing=DISABLED to enforce the fact that reference
data is immutable

There is nothing to prevent you from using this attribute for regular mutable
entities, and indeed this is sometimes worth doing during early prototyping.

Q However, if there is no realistic upper bound to the number of instances of an
entity that might be created, generally you should use autoComplete::-()
supporting method or the @DomainObject#autoCompleteRepository() attribute
instead.

71

../rgant/rgant.pdf#_rgant-Programmatic
../rgant/rgant.pdf#_rgant-Programmatic
../rgant/rgant.pdf#_rgant-DomainService_nature
../rgant/rgant.pdf#_rgant-Action_restrictTo
../rgant/rgant.pdf#_rgant-Action_restrictTo
../ugvw/ugvw.pdf
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgant/rgant.pdf#_rgant-DomainObject_autoCompleteRepository

10.4. createdLifecycleEvent()

Whenever a domain object is instantiated or otherwise becomes known to the framework, a
"created" lifecycle event is fired. This is typically when the DomainObjectContainer's
newTransientInstance() is called; it will also happen if the object is simply instantiated with new(::-),
and then the container’s injectServicesInto(:--) method is called.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the object just created. The subscriber could then, for example, update the object, eg looking up
state from some external datastore.

By default the event raised is ObjectCreatedEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the createdLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(

createdLifecycleEvent=ToDoItem.CreatedEvent.class

)
public class ToDoltem {

public static class CreatedEvent
extends org.apache.isis.applib.services.eventbus.ObjectCreatedEvent<ToDoItem>

{3
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.4.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

72

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer_object-creation-api
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer_services-api
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer_services-api
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer_services-api
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectCreatedEvent ev) {
if(ev.getSource() instanceof ToDoltem) { ... }

}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectCreatedEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.4.2. Default, Doop and Noop events

If the createdlLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectCreatedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.createdlLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the createdLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectCreatedEvent.Doop as such a subclass, so
setting the createdlLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectCreatedEvent.Noop; if createdlLifecycleEvent
attribute is set to this class, then no event will be posted.

10.5. editing()

The editing() attribute determines whether a domain object’s properties and collections are not
editable (are read-only).

The default is AS_CONFIGURED, meaning that the configuration property isis.objects.editing is used
to determine the whether the object is modifiable:

73

../rgcfg/rgcfg.pdf#_rgcfg_configuring-core

* true
the object’s properties and collections are modifiable.
» false

the object’s properties and collections are read-only, ie not modifiable.

If there is no configuration property in isis.properties then object are assumed to be modifiable.

In other words, editing can be disabled globally for an application by setting:
isis.objects.editing=false

We recommend enabling this feature; it will help drive out the underlying
business operations (processes and procedures) that require objects to change;
these can then be captured as business actions.

The related editingDisabledReason() attribute specifies the a hard-coded reason why the object’s
properties and collections cannot be modified directly.

This default can be overridden on an object-by-object basis; if editing() is set to ENABLED then the
object’s properties and collections are editable irrespective of the configured value; if set to
DISABLED then the object’s properties and collections are not editable irrespective of the configured
value.

For example:

(
editing=Editing.DISABLED,
editingDisabledReason="Reference data, so cannot be modified"

)
public class Country {

}

Another interesting example of immutable reference data is to define an entity to

Q represent individual dates; after all, for a system with an expected lifetime of 20
years that equates to only 7,300 days, a comparatively tiny number of rows to
hold in a database.

10.6. loadedLifecycleEvent()

Whenever a persistent domain object is loaded from the database, a "loaded" lifecycle event is
fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to

74

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

the domain object just loaded. The subscriber could then, for example, update or default values on
the object (eg to support on-the-fly migration scenarios).

By default the event raised is ObjectLoadedEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the loadedLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(

loadedLifecycleEvent=ToDoItem.LoadedEvent.class

)
public class ToDoltem {
public static class LoadedEvent
extends org.apache.isis.applib.services.eventbus.ObjectLoadedEvent<ToDoItem> {

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.6.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava APIL

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectLoadedEvent ev) {
if(ev.getSource() instanceof ToDoItem) { ... }
}

or can be fine-grained (by subscribing to specific event subtypes):

75

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectLoadedEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.6.2. Default, Doop and Noop events

If the loadedLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectLoadedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.loadedLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the loadedLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectLoadedEvent.Doop as such a subclass, so
setting the loadedlLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectlLoadedEvent.Noop; if loadedlLifecycleEvent
attribute is set to this class, then no event will be posted.

10.7. mixinMethod()

The mixinMethod() attribute specifies the name of the method to be treated as a "reserved" method
name, meaning that the mixin’s name should instead be inferred from the mixin’s type.

For example:

76

public class Customer {

(nature=Nature.MIXIN, mixinMethod="execute")
public static class placeOrder {

Customer customer;
public placeOrder(Customer customer) { this.customer = customer; }

public Customer execute(Product p, int quantity) { ... }
public String disableExecute() { ... }
public String validate@Execute() { ... }

This allows all mixins to follow a similar convention, with the name of the mixin inferred entirely
from its type ("placeOrder").

When invoked programmatically, the code reads:

mixin(Customer.placeOrder.class, someCustomer).execute(someProduct, 3);

10.8. nature()

The nature() attribute is used to characterize the domain object as either an entity (part of the
domain layer) or as a view model (part of the application layer). If the domain object should be
thought of as an entity, it also captures how the persistence of that entity is managed.

For example:

(nature=Nature.VIEW _MODEL)
public class PieChartAnalysis {

}

Specifically, the nature must be one of:
» NOT_SPECIFIED,
(the default); specifies no paricular semantics for the domain class.
* JDO_ENTITY

indicates that the domain object is an entity whose persistence is managed internally by Apache
Isis, using the JDO/DataNucleus objectstore.

77

o EXTERNAL_ENTITY

indicates that the domain objecct is a wrapper/proxy/stub (choose your term) to an entity that is
managed by some related external system. For example, the domain object may hold just the
URI to a RESTful resource of some third party REST service, or the id of some system accessible
over SOAP.

The identity of an external entity is determined solely by the state of entity’s properties. The
framework will automatically recreate the domain object each time it is interacted with.

o INMEMORY_ENTITY

indicates that the domain object is a wrapper/proxy/stub to a "synthetic" entity, for example one
that is constructed from some sort of internal memory data structure.

The identity of an inmemory entity is determined solely by the state of entity’s properties. The
framework will automatically recreate the domain object each time it is interacted with.

o MIXIN

indicates that the domain object is part of the domain layer, and is contributing behaviour to
objects of some other type as a mixin (also known as a trait).

Equivalent to annotating with @Mixin. For further discussion on using mixins, see mixins in the
user guide.

» VIEW_MODEL

indicates that the domain object is conceptually part of the application layer, and exists to
surfaces behaviour and/or state that is aggregate of one or more domain entities.

Those natures that indicate the domain object is an entity (of some sort or another) mean then that
the domain object is considered to be part of the domain model layer. As such the domain object’s
class cannot be annotated with @ViewModel or implement the ViewModel interface.

Under the covers Apache Isis' support for VIEW_MODEL, EXTERNAL_ENTITY and
INMEMORY_ENTITY domain objects is identical; the state of the object is encoded into
its internal OID (represented ultimately as its URL), and is recreated directly from
that URL.

Because this particular implementation was originally added to Apache Isis in
0 support of view models, the term was also used for the logically different external
entities and inmemory entities.

The benefit of nature() is that it allows the developer to properly characterize the
layer (domain vs application) that an entity lives, thus avoiding confusion as
"view model" (the implementation technique) and "view model" (the application
layer concept).

78

../rgant/rgant.pdf#_rgant-Mixin
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins
../rgant/rgant.pdf#_rgant-ViewModel
../rgcms/rgcms.pdf#_rgcms_classes_super_ViewModel

On the other hand, view models defined in this way do have some limitations; see
@ViewModel for further discussion.

i

These limitations do not apply to JAXB view models. If you are using view models
heavily, you may wish to restrict yourself to just the JAXB flavour.

10.9. persistedLifecycleEvent()

Whenever a (just created, still transient) domain object has been saved (INSERTed in)to the
database, a "persisted" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, maintain an external datastore.

A The object should not be modified during the persisted callback.

By default the event raised is ObjectPersistedEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the persistedLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(

persistedLifecycleEvent=ToDoItem.PersistedEvent.class

)
public class ToDoltem {

public static class PersistedEvent
extends org.apache.isis.applib.services.eventbus.ObjectPersistedEvent<
ToDoItem> { }

}
The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.9.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava APIL

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

79

../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectPersistedEvent ev) {
if(ev.getSource() instanceof ToDoltem) { ... }
}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectPersistedEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.9.2. Default, Doop and Noop events

If the persistedLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectPersistedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.persistedlLifecycleEvent.postForDefault
configuration property can be set to "false"; this will disable posting.

On the other hand, if the persistedLifecycleEvent has been explicitly specified to some subclass,
then an event will be posted. The framework provides ObjectPersistedEvent.Doop as such a
subclass, so setting the persistedLifecycleEvent attribute to this class will ensure that the event to
be posted, irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectPersistedEvent.Noop; if
persistedLifecycleEvent attribute is set to this class, then no event will be posted.

10.10. persistingLifecycleEvent()

Whenever a (just created, still transient) domain object is about to be saved (INSERTed in)to the
database, a "persisting" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, update the object, or it could use it
maintain an external datastore. One possible application is to maintain a full-text search database

80

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

using Apache Lucene or similar.

Another use case is to maintain "last updated by"/"last updated at" properties.
While you can roll your own, note that the framework provides built-in support
for this use case through the Timestampable role interface.

By default the event raised is ObjectPersistingEvent.Default. For example:

public class ToDoltemDto {

}

The purpose of the persistinglLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(

persistinglifecycleEvent=ToDoItem.PersistingEvent.class

)
public class ToDoltem {

public static class PersistingEvent
extends org.apache.isis.applib.services.eventbus.ObjectPersistingEvent
<ToDoItem> { }

}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.10.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectPersistingEvent ev) {
if(ev.getSource() instanceof ToDoItem) { ... }
Iy

or can be fine-grained (by subscribing to specific event subtypes):

81

https://lucene.apache.org/
../rgcms/rgcms.pdf#_rgcms_classes_roles_Timestampable
https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

@DomainService(nature=NatureOfService.DOMAIN)

public class SomeSubscriber extends AbstractSubscriber {
@com.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectPersistingEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.10.2. Default, Doop and Noop events

If the persistinglLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectPersistingEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.persistinglLifecycleEvent.postForDefault
configuration property can be set to "false"; this will disable posting.

On the other hand, if the persistinglLifecycleEvent has been explicitly specified to some subclass,
then an event will be posted. The framework provides ObjectPersistingEvent.Doop as such a
subclass, so setting the persistinglLifecycleEvent attribute to this class will ensure that the event to
be posted, irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectPersistingEvent.Noop; if
persistinglLifecycleEvent attribute is set to this class, then no event will be posted.

10.11. objectType()

The objectType() attribute is used to provide a unique alias for the object’s class name.

This value is used internally to generate a string representation of an objects identity (the 0id). This
can appear in several contexts, including:

* as the value of Bookmark#igetObjectType() and in the toString() value of Bookmark (see
BookmarkService)
* and thus in the "table-of-two-halves" pattern, as per the (non-ASF) Incode Platform's poly
module
* in the serialization of 0idDto in the command and interaction schemas
* in the URLs of the RestfulObjects viewer
* in the URLs of the Wicket viewer (in general and in particular if copying URLSs)

* in XML snapshots generated by the XmlSnapshotService

82

../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
http://platform.incode.org
../rgcms/rgcms.pdf#_rgcms_schema-cmd
../rgcms/rgcms.pdf#_rgcms_schema-ixn
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf
../ugvw/ugvw.pdf#_ugvw_features_hints-and-copy-url
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_XmlSnapshotService

10.11.1. Examples

For example:

(
objectType="orders.Order"

)
public class Order {

}

10.11.2. Precedence

The rules of precedence are:

1. @Discriminator

2. @DomainObject#objectType, or @0bjectType (deprecated)
3. @PersistenceCapable, if at least the schema attribute is defined.

If both schema and table are defined, then the value is “schema.table”. If only schema is defined,
then the value is “schema.className”.

4. Fully qualified class name of the entity.

This might be obvious, but to make explicit: we recommend that you always
specify an object type for your domain objects.

Q Otherwise, if you refactor your code (change class name or move package), then
any externally held references to the OID of the object will break. At best this will
require a data migration in the database; at worst it could cause external clients
accessing data through the Restful Objects viewer to break.

If the object type is not unique across all domain classes then the framework will
o fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

10.12. publishing()

The publishing() attribute determines whether and how a modified object instance is published via
the registered implementation of a PublishingService) or PublisherService. This attribute is also
supported for actions, where it controls whether action invocations are published as events, and
for @Property#publishing(), where it controls whether property edits are published as events.

A common use case is to notify external "downstream" systems of changes in the state of the Isis
application.

The default value for the attribute is AS_CONFIGURED, meaning that the configuration property

83

../rgant/rgant.pdf#_rgant-Discriminator
../rgant/rgant.pdf#_rgant_aaa_deprecated
../rgant/rgant.pdf#_rgant-PersistenceCapable
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublishingService
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublisherService
../rgant/rgant.pdf#_rgant-Action_publishing
../rgant/rgant.pdf#_rgant-Property_publishing
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core

isis.services.publish.objects is used to determine the whether the action is published:
° all
all changed objects are published
* none

no changed objects are published

If there is no configuration property in isis.properties then publishing is automatically enabled
for domain objects.

This default can be overridden on an object-by-object basis; if publishing() is set to ENABLED then
changed instances of the domain class are published irrespective of the configured value; if set to
DISABLED then the changed instances are not published, again irrespective of the configured value.

For example:

(
publishing=Publishing.ENABLED @

)
public class InterestRate {

}

@ because set to enabled, will be published irrespective of the configured value.

10.12.1. publishingPayloadFactory()

The (optional) related publishingPayloadFactory() specifies the class to use to create the (payload of
the) event to be published by the publishing factory.

Rather than simply broadcast that the object was changed, the payload factory allows a "fatter"
payload to be instantiated that can eagerly push commonly-required information to all subscribers.
For at least some subscribers this should avoid the necessity to query back for additional
information.

Be aware that this attribute is only honoured by the (deprecated)
A PublishingService, so should itself be considered as deprecated. It is ignored by
the replacement PublisherService,

10.13. removingLifecycleEvent()

Whenever a (persistent) domain object is about to be removed (DELETEd) from the database, a
"removing" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, could use it maintain an external

84

../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublishingService
../rgsvc/rgsvc.pdf#_rgsvc_persistence-layer-spi_PublisherService
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

datastore. One possible application is to maintain a full-text search database using Apache Lucene
or similar.

Another use case is to maintain "last updated by"/"last updated at" properties.
While you can roll your own, note that the framework provides built-in support
for this use case through the Timestampable role interface.

By default the event raised is ObjectRemovingEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the removinglLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(

removinglLifecycleEvent=ToDoItem.RemovingEvent.class

)
public class ToDoltem {

public static class RemovingEvent
extends org.apache.isis.applib.services.eventbus.ObjectRemovingEvent<ToDoItem>

{}
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.13.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectRemovingEvent ev) {
if(ev.qgetSource() instanceof ToDoItem) { ... }

}

85

https://lucene.apache.org/
../rgcms/rgcms.pdf#_rgcms_classes_roles_Timestampable
https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectRemovingEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.13.2. Default, Doop and Noop events

If the removinglLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectRemovingEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.removinglLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the removingLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectRemovingEvent.Doop as such a subclass, so
setting the removinglLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectRemovingEvent.Noop; if removinglLifecycleEvent
attribute is set to this class, then no event will be posted.

10.14. updatingLifecycleEvent()

Whenever a (persistent) domain object has been modified and is about to be updated to the
database, an "updating" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object. The subscriber could then, for example, update the object, or it could use it
maintain an external datastore. One possible application is to maintain a full-text search database
using Apache Lucene or similar.

Another use case is to maintain "last updated by"/"last updated at" properties.
While you can roll your own, note that the framework provides built-in support

for this use case through the Timestampable role interface.

By default the event raised is ObjectUpdatingEvent.Default. For example:

86

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
https://lucene.apache.org/
../rgcms/rgcms.pdf#_rgcms_classes_roles_Timestampable

public class ToDoItemDto {

}

The purpose of the updatinglLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(
updatinglifecycleEvent=ToDoItem.UpdatingEvent.class

)
public class ToDoltem {
public static class UpdatingEvent
extends org.apache.isis.applib.services.eventbus.ObjectUpdatingEvent<ToDoItem>

{3
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.14.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectUpdatingEvent ev) {
if(ev.getSource() instanceof ToDoItem) { ... }
}

or can be fine-grained (by subscribing to specific event subtypes):

87

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectUpdatingEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

10.14.2. Default, Doop and Noop events

If the updatinglLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectUpdatingEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.updatinglLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the updatinglLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectUpdatingEvent.Doop as such a subclass, so
setting the updatinglLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectUpdatingEvent.Noop; if updatinglLifecycleEvent
attribute is set to this class, then no event will be posted.

10.15. updatedLifecycleEvent()

Whenever a (persistent) domain object has been modified and has been updated in the database,
an "updated" lifecycle event is fired.

Subscribers subscribe through the EventBusService and can use the event to obtain a reference to
the domain object.

A The object should not be modified during the updated callback.

By default the event raised is ObjectUpdatedEvent.Default. For example:

public class ToDoItemDto {

}

88

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

The purpose of the updatedLifecycleEvent() attribute is to allows a custom subclass to be emitted
instead. A similar attribute is available for other lifecycle events.

For example:

(
updatedLifecycleEvent=ToDoItem.UpdatedEvent.class

)
public class ToDoltem {

public static class UpdatedEvent
extends org.apache.isis.applib.services.eventbus.ObjectUpdatedEvent<ToDoItem>

{}
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

10.15.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ObjectUpdatedEvent ev) {
if(ev.getSource() instanceof ToDoItem) { ... }
}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.ObjectUpdatedEvent ev) {

}

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

89

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

10.15.2. Default, Doop and Noop events

If the updatedlLifecycleEvent attribute is not explicitly specified (is left as its default value,
ObjectUpdatedEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectAnnotation.updatedLifecycleEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the updatedLifecycleEvent has been explicitly specified to some subclass, then
an event will be posted. The framework provides ObjectUpdatedEvent.Doop as such a subclass, so
setting the updatedLifecycleEvent attribute to this class will ensure that the event to be posted,
irrespective of the configuration property setting.

And, conversely, the framework also provides ObjectUpdatedEvent.Noop; if updatedLifecycleEvent
attribute is set to this class, then no event will be posted.

90

Chapter 11. @DomainObjectlLayout

The @DomainObjectLayout annotation applies to domain classes, collecting together all UI hints within
a single annotation.

0 For view models that have been annotated with @ViewModel the equivalent
@ViewModellayout can be used.

The table below summarizes the annotation’s attributes.

Table 13. @DomainObjectLayout attributes

Attribute Values (default) Description

bookmarking() AS_ROOT, AS_CHILD, NEVER whether (and how) this domain object should be
(NEVER) automatically bookmarked

cssClass() Any string valid as a the css class that a domain class (type) should
CSS class have, to allow more targetted styling in

application.css

cssClassFa() Any valid Font specify a font awesome icon for the action’s
awesome icon name menu link or icon.

cssClassFaPosition() LEFT, RIGHT Currently unused.
(LEFT)

cssClassUikvent() subtype of the event type to be posted to the
CssClassUiEvent EventBusService to obtain a CSS class for the
(CssClassUiEvent.Defaul domain object.
t)

describedAs() String. description of this class, eg to be rendered in a

tooltip.
iconUiEvent() subtype of IconUiEvent the event type to be posted to the

(IconUiEvent.Default) EventBusService to obtain the icon (name) for the
domain object.

named() String. to override the name inferred from the action’s
name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

paged() Positive integer the page size for instances of this class when
rendered within a table (as returned from an
action invocation)

plural() String. the plural name of the class

titleUikvent() subtype of TitleUiEvent the event type to be posted to the
(TitleUiEvent.Default) EventBusService to obtain the title for the
domain object.

For example:

91

../rgant/rgant.pdf#_rgant-ViewModelLayout
../rgant/rgant.pdf#_rgant-DomainObjectLayout_bookmarking
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssclass
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassFa
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassUiEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs
../rgant/rgant.pdf#_rgant-DomainObjectLayout_iconUiEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_paged
../rgant/rgant.pdf#_rgant-DomainObjectLayout_plural
../rgant/rgant.pdf#_rgant-DomainObjectLayout_titleUiEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

(
cssClass="x-key",
cssClassFa="fa-checklist",
describedAs="Capture a task that you need to do",
named="ToDo",
paged=30,
plural="ToDo List")

)
public class ToDoItem {

}

Note that there is (currently) no support for specifying UI hints for domain
objects through the dynamic .1ayout. json file (only for properties, collections and
actions are supported).

11.1. bookmarking()

The bookmarking() attribute indicates that an entity is automatically bookmarked. This attribute is
also supported for domain objects.

(In the Wicket viewer), a link to a bookmarked object is shown in the bookmarks panel:

Ll Mow lawn due by 2014-03-27 +

(- localhost:3080/wicket/entity/TODO:L_4

r ~
@ cLesmaLL

@ 5§ BUYBREAD DUE BY 2014-03-21

O @ MOW LAWN DUE BY 2014-03-27

O @ TODOS.NOT YET COMPLETE

IE RECENT CHANGES

Priority
RELATIVE PRIORITY

PRE

DUE BY 27+

Other

COST
ACITLY

uPL

NOTES

ATTACHMENT

92

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Action_bookmarking
images/reference-annotations/DomainObjectLayout/bookmarking.png

0 Note that this screenshot shows an earlier version of the Wicket viewer Ul
(specifically, pre 1.8.0).

For example:

(bookmarking=BookmarkPolicy.AS_ROOT)
public class ToDoltem ... {

indicates that the ToDoItem class is bookmarkable:

It is also possible to nest bookmarkable entities. For example, this screenshot is taken from Estatio:

i 0e | OXF-TOPMODEL-001: Rent 15-07-2010/...] - ‘

(— localhost:8080/wicket/entity/org.estatio.dom.lease.LeaseTermForindexableRentL_0

@ clear all

@ [OXF] Oxford Super Mall

S Indices Migration Other Administration

m [OXF-001] Unit 1
@ 5] OXF-TOPMODEL-0M

@9 OXF-TOPWODEL-D1: Rent Create Next Verify Approve

@P OKF-TOPODEL-DU1: Rent: 15-07-2040/-——

Indexable Rent

Index 4 ISTAT FOI
Base Index Start Date 01-07-2010
Base Index Value

Next Index Start Date 01-01-2011
Next Index Value

Rebase Factor

Effective Date 01-04-2011
Indexation Percentage

Levelling Percentage

Change Parameters

= Due Date = _Effective Start Date = _Effective End D

o Note that this screenshot shows an earlier version of the Wicket viewer Ul
(specifically, pre 1.8.0).

For example, the Property entity "[OXF] Oxford Super Mall" is a root bookmark, but the Unit child
entity "[OXF-001] Unit 1" only appears as a bookmark but only if its parent Property has already
been bookmarked.

This is accomplished with the following annotations:

93

../ugvw/ugvw.pdf
http://github.com/estatio/estatio
images/reference-annotations/DomainObjectLayout/bookmarking-nested.png
../ugvw/ugvw.pdf

@DomainObject(bookmarking=BookmarkPolicy.AS_ROOT)
public class Property { ... }

and

@DomainObject(bookmarking=BookmarkPolicy.AS_CHILD)
public abstract class Unit { ... }

The nesting can be done to any level; the Estatio screenshot also shows a bookmark nesting Lease >
LeaseItem > LeaseTerm (3 levels deep).

11.2. cssClass()

The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the domain object. Application-specific CSS can then be used to target and
adjust the Ul representation of that particular element.

This attribute can also be applied to domain objects, view models, actions properties, collections
and parameters.

For example:

@DomainObject(
cssClass="x-core-entity"

)
public class ToDoItem { ... }

The similar @DomainObjectlLayout#cssClassFa() annotation attribute is also used as
0 a hint to apply CSS, but in particular to allow Font Awesome icons to be rendered
as the icon for classes.

11.3. cssClassFa()

The cssClassFa() attribute is used to specify the name of a Font Awesome icon name, to be
rendered as the domain object’s icon.

These attributes can also be applied to view models to specify the object’s icon, and to actions to
specify an icon for the action’s representation as a button or menu item.

If necessary the icon specified can be overridden by a particular object instance using the
iconName() method.

For example:

94

../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassFa
http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClassFa
../rgant/rgant.pdf#_rgant-ActionLayout_cssClassFa
../rgcms/rgcms.pdf#_rgcms_methods_reserved_iconName

(

cssClassFa="fa-check-circle"

)
public class ToDoltem { ... }

There can be multiple "fa-" classes, eg to mirror or rotate the icon. There is no need to include the
mandatory fa "marker" CSS class; it will be automatically added to the list. The fa- prefix can also
be omitted from the class names; it will be prepended to each if required.

The related cssClassFaPosition() attribute is currently unused for domain objects; the icon is
always rendered to the left.

The similar @DomainObjectLayout#icssClass() annotation attribute is also used as a
hint to apply CSS, but for wrapping the representation of an object or object
member so that it can be styled in an application-specific way.

11.4. cssClassUiEvent()

Whenever a domain object is to be rendered, the framework fires off an CSS class UI event to obtain
a CSS class to use in any wrapping <div>s and s that render the domain object. This is as an
alternative to implementing cssClass() reserved method. (If cssClass() is present, then it will take
precedence).

Subscribers subscribe through the EventBusService and can use obtain a reference to the domain
object from the event. From this they can, if they wish, specify a CSS class for the domain object
using the event’s APIL

The feature was originally introduced so that @XmlRootElement-annotated view
o models could be kept as minimal as possible, just defining the data. UI events
allow subscribers to provide UI hints, while mixins can be used to provide the

behaviour.

By default the event raised is CssClassUiEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the cssClassUiEvent() attribute is to allows a custom subclass to be emitted instead.
A similar attribute is available for titles and icons.

For example:

95

../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgcms/rgcms.pdf#_rgcms_methods_reserved_cssClass
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-XmlRootElement
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins

(

iconUiEvent=ToDoItemDto.CssClassUiEvent.class

)
public class ToDoItemDto {
public static class CssClassUiEvent
extends org.apache.isis.applib.services.eventbus.CssClassUiEvent<ToDoItemDto>

{1}
}

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

11.4.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(CssClassUiEvent ev) {
if(ev.getSource() instanceof ToDoItemDto) { ... }

}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItemDto.(CssClassUiEvent ev) {

}

The subscriber should then use CssClassUiEvent#isetCssClass(:++) to actually specify the CSS class to
be used.

If the AxonFramework is being used, replace

Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

96

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

11.4.2. Default, Doop and Noop events

If the cssClassUiEvent attribute is not explicitly specified (is left as its default value,
(ssClassUiEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectLayoutAnnotation.cssClassUiEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the cssClassUiEvent has been explicitly specified to some subclass, then an
event will be posted. The framework provides CssClassUiEvent.Doop as such a subclass, so setting
the cssClassUiEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides CssClassUiEvent.Noop; if cssClassUiEvent attribute is
set to this class, then no event will be posted.

11.4.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or as a result of calling the
DomainObjectContainer's cssClassOf(:++) method.

11.5. describedAs()

The describedAs() attribute is used to provide a short description of the domain object to the user.
In the Wicket viewer it is displayed as a 'tool tip'. The attribute can also be specified for collections,
properties, actions, parameters and view models.

For example:

("A customer who may have originally become known to us via " +
"the marketing system or who may have contacted us directly.")

public class ProspectiveSale {

}

11.6. iconUiEvent()

Whenever a domain object is to be rendered, the framework fires off an icon UI event to obtain an
icon (name) for the object (if possible). This is as an alternative to implementing iconName()
reserved method. (If iconName() is present, then it will take precedence).

Subscribers subscribe through the EventBusService and can use obtain a reference to the domain
object from the event. From this they can, if they wish, specify an icon name for the domain object
using the event’s APL

97

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-ViewModelLayout_describedAs
../rgcms/rgcms.pdf#_rgcms_methods_reserved_iconName
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

The feature was originally introduced so that @XmlRootElement-annotated view

o models could be kept as minimal as possible, just defining the data. UI events
allow subscribers to provide UI hints, while mixins can be used to provide the
behaviour.

By default the event raised is IconUiEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the iconUiEvent() attribute is to allows a custom subclass to be emitted instead. A
similar attribute is available for titles and CSS classes.

For example:

(

iconUiEvent=ToDoItemDto.IconUiEvent.class

)
public class ToDoItemDto {

public static class IconUiEvent
extends org.apache.isis.applib.services.eventbus.IconUiEvent<ToDoItemDto> { }

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

11.6.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava APIL

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(IconUiEvent ev) {
if(ev.getSource() instanceof ToDoItemDto) { ... }
}

or can be fine-grained (by subscribing to specific event subtypes):

98

../rgant/rgant.pdf#_rgant-XmlRootElement
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins
https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

(nature=NatureOfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItemDto.IconUiEvent ev) {

}

The subscriber should then use IconUiEvent#setIconName(:--) to actually specify the icon name to be
used.

If the AxonFramework is being used, replace
Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

11.6.2. Default, Doop and Noop events

If the iconUiEvent attribute is not explicitly specified (@s left as its default value,
IconUiEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectlLayoutAnnotation.iconUiEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the iconUiEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides IconUiEvent.Doop as such a subclass, so setting the
iconUiEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides IconUiEvent.Noop; if iconUiEvent attribute is set to this
class, then no event will be posted.

11.6.3. Raising events programmatically

Normally events are only raised for interactions through the UL However, events can be raised
programmatically either by calling the EventBusService API directly, or as a result of calling the
DomainObjectContainer's iconNameOf(:--) method.

11.7. named()

The named() attribute explicitly specifies the domain object’s name, overriding the name that would
normally be inferred from the Java source code. The attribute can also be specified for actions,
collections, properties, parameters, view models and domain services.

99

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_named
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named

Following the don’t repeat yourself principle, we recommend that you only use

Q this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

For example:

(

named="Customer"

)

public class CustomerImpl implements Customer{

}

It’s also possible to specify a plural form of the name, used by the framework when rendering a
standalone collection of the domain object.

Q The framework also provides a separate, powerful mechanism for
internationalization.

11.8. paged()

The paged() attribute specifies the number of rows to display in a standalone collection, as returned
from an action invocation. This attribute can also be applied to collections and view models.

The RestfulObjects viewer currently does not support paging. The Wicket viewer
does support paging, but note that the paging is performed client-side rather than

A server-side.

We therefore recommend that large collections should instead be modelled as
actions (to allow filtering to be applied to limit the number of rows).

For example:

(paged=15)
public class Order {

}

It is also possible to specify a global default for the page size of standalone collections, using the
configuration property isis.viewer.paged.standalone.

11.9. plural()

When Apache Isis displays a standalone collection of several objects, it will label the collection

100

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
../rgant/rgant.pdf#_rgant-DomainObjectLayout_plural
../ugbtb/ugbtb.pdf#_ugbtb_i18n
../rgant/rgant.pdf#_rgant-CollectionLayout_paged
../rgant/rgant.pdf#_rgant-ViewModelLayout_paged
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core

using the plural form of the object type.

By default the plural name will be derived from the end of the singular name, with support for
some basic English language defaults (eg using "ies" for names ending with a "y").

The plural() attribute allows the plural form of the class name to be specified explicitly. This
attribute is also supported for view models.

For example:

(plural="Children")
public class Child {

}

11.10. titleUiEvent()

Whenever a domain object is to be rendered, the framework fires off a title UI event to obtain a title
for the object. This is as an alternative to implementing title() reserved method, or using the
@Title annotation, within the class itself. (If either title() or @Title are present, then they will take
precedence).

Subscribers subscribe through the EventBusService and can use obtain a reference to the domain
object from the event. From this they can, if they wish, specify a title for the domain object using
the event’s APL

The feature was originally introduced so that @XmlRootElement-annotated view
o models could be kept as minimal as possible, just defining the data. UI events
allow subscribers to provide UI hints, while mixins can be used to provide the

behaviour.

By default the event raised is TitleUiEvent.Default. For example:

public class ToDoItemDto {

}

The purpose of the titleUiEvent() attribute is to allows a custom subclass to be emitted instead. A
similar attribute is available for icon names and CSS classes.

For example:

101

../rgant/rgant.pdf#_rgant-ViewModelLayout_plural
../rgcms/rgcms.pdf#_rgcms_methods_reserved_title
../rgant/rgant.pdf#_rgant-Title
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-XmlRootElement
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins

(
titleUiEvent=ToDoItemDto.TitleUiEvent.class

)
public class ToDoItemDto {
public static class TitleUiEvent
extends org.apache.isis.applib.services.eventbus.TitleUiEvent<ToDoItemDto> { }

The benefit is that subscribers can be more targeted as to the events that they subscribe to.

11.10.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples
below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(TitleUiEvent ev) {
if(ev.getSource() instanceof ToDoItemDto) { ... }

}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItemDto.TitleUiEvent ev) {

}

The subscriber should then use either TitleUiEvent#setTranslatableTitle(::*) or
TitleUiEvent#setTitle(:--) to actually specify the title to be used.

If the AxonFramework is being used, replace

Q @com.google.common.eventbus.Subscribe with
@org.axonframework.eventhandling.annotation.EventHandler.

102

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

11.10.2. Default, Doop and Noop events

If the titleUiEvent attribute is not explicitly specified (s left as its default wvalue,
TitleUiEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.domainObjectlLayoutAnnotation.titleUiEvent.postForDefault configuration
property can be set to "false"; this will disable posting.

On the other hand, if the titleUiEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides TitleUiEvent.Doop as such a subclass, so setting the
titleUiEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides TitleUiEvent.Noop; if titleUiEvent attribute is set to
this class, thn no event will be posted.

11.10.3. Raising events programmatically

Normally events are only raised for interactions through the UI. However, events can be raised
programmatically either by calling the EventBusService API directly, or as a result of calling the
DomainObjectContainer's title0f(::-) method.

103

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer

Chapter 12. @gDomainService

The @DomainService annotation indicates that the (concrete) class should be automatically
instantiated as a domain service.

Domain services with this annotation do NOT need to be registered explicitly in isis.properties;
they will be discovered automatically on the CLASSPATH.

The table below summarizes the annotation’s attributes.

Table 14. @DomainService attributes

Attribute Values (default) Description

nature() VIEW, VIEW _MENU_ONLY, the nature of this service: providing actions for
VIEW_CONTRIBUTIONS_ONL menus, or as contributed actions, or for the
Y, VIEW_REST_ONLY, RestfulObjects REST API, or neither

DOMAIN (VIEW)

objectType() equivalent to @DomainObject#objectType(),
specifies the objectType of the service. The
instanceld for services is always "1".

repositoryFor () if this domain service acts as a repository for an
entity type, specify that entity type. This is used
to determine an icon to use for the service (eg as
shown in action prompts).

menuOrder () Deprecated in 1.8.0; use instead
@omainServicelayout#menuOrder()

For example:

(
nature=NatureOfService.DOMAIN,

repositoryFor=Loan.class

)

public class LoanRepository {

public List<Loan> findLoansFor(Borrower borrower) { ... }

12.1. nature()

By default, a domain service’s actions will be rendered in the application menu bar and be
contributed and appear in the REST API and (of course) be available to invoke programmatically
wherever that domain service is injected. This is great for initial prototyping, but later on you may
prefer to add a little more structure. This is the purpose of the nature() attribute: to indicates the
intent of (all of) the actions defined within the domain service.

The values of the enum are:

104

../rgant/rgant.pdf#_rgant-DomainService_nature
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-DomainService_objectType
../rgant/rgant.pdf#_rgant-DomainObject_objectType
../rgant/rgant.pdf#_rgant-DomainService_repositoryFor
../rgant/rgant.pdf#_rgant-DomainServiceLayout_menuOrder

o VIEW

The default; the service’s actions appear on menu bars, can be contributed, appear in the REST
API

o VIEW_MENU_ONLY

The service’s actions appear on menus and in the REST API, but are not contributed to domain
objects or view models

o VIEW_CONTRIBUTIONS_ONLY

The service’s actions are intended only to be used as contributed actions/associations to domain
objects and view models.

The related @ActionlLayoutficontributedAs() determines whether any given (1-arg) action is
contributed as an association rather than an action.

o VIEW_REST_ONLY

The service’s actions are intended only to be listed in the REST API exposed by the
RestfulObjects viewer.

* DOMAIN

The service and its actions are only intended to be invoked programmatically; they are a
domain layer responsibility.

The actual class name of the domain service is only rendered for the VIEW, VIEW_MENU_ONLY and
VIEW_REST_ONLY natures. Thus, you might also want to adopt naming conventions for your domain
classes so you can infer the nature from the class. For example, the naming convention adopted (by
and large) by the (non-ASF) Incode Platform is ProgrammaticServices or Repository as a suffix for
DOMAIN services, and Contributions as a suffix for VIEW _CONTRIBUTIONS ONLY services.

For example:

(
nature=NatureOfService.VIEW CONTRIBUTIONS_ONLY

)
public class LoanContributions {
(semantics=SemanticsOf.SAFE)
(contributed=Contributed.AS_ASSOCIATION)
public List<Loan> currentlLoans(Borrower borrower) { ... }
public Borrower newlLoan(Borrower borrower, Book book) { ... }

XS,

@ Contributions as a suffix for a domain service that contributes a number of actions to Borrowers.
Note that Borrower could be a (marker) interface, so this functionality is "mixed in" merely by the
class (eg LibraryMember) implementing this interface

@ actions contibuted as associations (a collection in this case) must have safe semantics

105

../rgant/rgant.pdf#_rgant-ActionLayout_contributedAs
../ugvro/ugvro.pdf
http://platform.incode.org

Another example:

(
nature=NatureOfService.DOMAIN

)

public class LoanRepository { ©)
@

public List<Loan> findLoansFor(Borrower borrower) { ... }

@ Repository as a suffix for a domain-layer service

@ methods on DOMAIN services are often @Programmatic; they will never be exposed in the UL, so
there’s little point in including them in Apache Isis' metamodel

A final example:

(

nature=NatureOfService.VIEW _MENU ONLY
)
public class Loans { D

(semantics=SemanticsOf.SAFE)

public List<Loan> findOverdueloans() { ... }

LoanRepository loanRepository; @
}

@ name is intended to be rendered in the Ul

@ it’s common for domain-layer domain services to be injected into presentation layer services
(such as VIEW_MENU_ONLY and VIEW_CONTRIBUTIONS_ONLY).

12.2. objectType()

The objectType() attribute is used to provide a unique alias for the domain service’s class name.

This value is used internally to generate a string representation of an service identity (the 0id). This
can appear in several contexts, including:

* as the value of Bookmark#getObjectType() and in the toString() value of Bookmark (see
BookmarkService)

 in the serialization of 0idDto in the command and interaction schemas
* in the URLs of the RestfulObjects viewer

* in the URLs of the Wicket viewer (specifically, for bookmarked actions)

12.2.1. Example

For example:

106

../rgant/rgant.pdf#_rgant-Programmatic
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
../rgcms/rgcms.pdf#_rgcms_schema-cmd
../rgcms/rgcms.pdf#_rgcms_schema-ixn
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf

(

objectType="orders.OrderMenu"

)

public class OrderMenu {

}

12.2.2. Precedence
The rules of precedence are:

1. @DomainService#objectType
2. 9etId()
3. The fully qualified class name.

This might be obvious, but to make explicit: we recommend that you always
specify an object type for your domain services.

Q Otherwise, if you refactor your code (change class name or move package), then
any externally held references to the OID of the service will break. At best this
will require a data migration in the database; at worst it could cause external
clients accessing data through the Restful Objects viewer to break.

If the object type is not unique across all domain classes then the framework will
0 fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

12.3. repositoryFor()

The repositoryFor() attribute is intended for domain services (probably with a nature=DOMAIN) that
are intended to act as repositories for domain entities.

For example:

(
nature=NatureOfService.DOMAIN,
repositoryFor=Loan.class

)

public class LoanRepository {

public List<Loan> findLoansFor(Borrower borrower) { ... }

Currently the metadata is unused; one planned use is to infer the icon for the domain service from
the icon of the nominated entity.

107

../rgcms/rgcms.pdf#_rgcms_methods_reserved_getId
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-DomainService_nature

Chapter 13. @DomainServicelayout

The @DomainServicelayout annotation applies to domain services, collecting together all view layout

semantics within a single annotation.

Q You will also find some additional material in the object layout chapter.

The table below summarizes the annotation’s attributes.

Table 15. @DomainServicelayout attributes

Attribute Values (default)

menuBar () PRIMARY, SECONDARY,
TERTIARY (PRIMARY).

menuOrder()

named () string, eg "Customers"

For example:

(
menuBar=MenuBar.PRIMARY,
menuOrder="100",
named="ToDos"

)
public class ToDoItems {

}

Description

the menubar in which the menu that holds this
service’s actions should reside.

the order of the service’s menu with respect to
other service’s.

name of this class (overriding the name derived
from its name in code)

Note that there is (currently) no support for specifying UI hints for domain
services through the dynamic .layout.json file (only for properties, collections

and actions are supported).

13.1. menuBar()

The menuBar() attribute is a hint to specify where on the application menu a domain service’s

actions should be rendered.

For example:

108

../ugvw/ugvw.pdf#_ugvw_layout_application-menu
../rgant/rgant.pdf#_rgant-DomainServiceLayout_menuBar
../rgant/rgant.pdf#_rgant-DomainServiceLayout_menuOrder
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
../ugvw/ugvw.pdf#_ugvw_layout_file-based

(menuBar=MenuBar.PRIMARY)
public class ToDoltems {

In the Wicket viewer, domain services placed on the PRIMARY menu bar appears to the left:

E ToDo App ToDos ~ Analysis ~

Activity ~

Security ~

Prototyping ~

& Hitodoapp-admin~

+ New To Do

— Not Yet Complete
@DaShboa ol Complete - ‘h

? Categorized

Not Yet Complete

& Export To Word Doc

Description ¥
Buy milk

Vacuum house

Mow lawn

Pick up laundry

Write blog post

Organize brown bag
Sharpen knives

Submit conference session

Stage lsis release

Qb aahaaaaad

Write to penpal

Complete

Description s

Category s

Category ™
Domestic
Domestic
Domestic
Domestic
Professional
Professional
Domestic
Professional
Professional

Other

Subcategory s

Subcategory ¥
Shopping
Housework
Garden
Chores
Marketing
Consulting
Chores
Education
Open Source

Other

Whether this todo item has been completed or not. s

‘Whether this todo item has been completed or not. s

At Path s

At Path s

Jusers/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin
Jusers/todoapp-admin
/users/todoapp-admin
Jusers/todoapp-admin
/users/todoapp-admin
/users/todoapp-admin
Jusers/todoapp-admin

/users/todoapp-admin

Export to Word [Export As Xml EH Table ~

Relative Priority s

=

10

Relative Priority s

Apachelsis™ About

Due By s

Due By ¥ Cost® Doc®

03-06-2015 0.75
06-06-2015
09-06-2015
09-06-2015 7.50
10-06-2015
17-06-2015
17-06-2015

24-06-2015

EH Table ~

Cost ¥ Doc

Change theme ~

Domain services placed on the SECONDARY menu bar appear to the right:

109

../ugvw/ugvw.pdf
images/reference-annotations/DomainServiceLayout/menuBar-primary.png

ToDo App ToDos~ Analysis - Activity + Security ~ Prototyping ~ & Hitodoapp-admin~

¥ Run Fixture Script

@ Dashboard

. Set subscriber behaviour

Not Yet Complete m

Description ¥ Category® Subcategory® Whether this todo item has been completed or not. ¥ ¥ % Cost¥ Doc®
[] Buy milk Domestic Shopping 2015 0.75
& Vacuum house Domestic Housework A 12015
& Mowlawn Domestic Garden i Download Meta Mode 2015
& Download Layouts
U Pick up laundry Domestic Chores Il 12015 7.50
< Rebuild Services Meta Model
Q Write blog post Professional Marketing Jlne s voapgs @ o—rowe 2015
Q Organize brown bag Professional Consulting Jusers/todoapp-admin & 17-06-2015
Q Sharpen knives Domestic Chores {users/todoapp-admin 7 17-06-2015
[] Submit conference session Professional Education Jusers/todoapp-admin & 24-06-2015
Q Stage Isis release Professional Open Source /users/todoapp-admin 9
U Write to penpal Other Other /users/todoapp-admin 10
Description ® Category ¥ Subcategory ¥ Whether this todo item has been completed or not. $ AtPath # RelativePriority ¥ DueBy % Cost® Doc®
@

Apachelsis™ About Change theme «

Domain services placed on the TERTIARY appear in the menu bar associated with the user’s name
(far top-right)

ODO App ToDos ~ Analysis ~ Activity ~ Security ~ Prototyping ~ & Hitodoapp-admin~

Application Settings

h Tenancy

Dashboard a
o CTS——

Not Yet Complete Export to Word ;-b Logout
Description s Categor\,': Subcategory % Whether this todo item has been completed or not. $ AtPath ¥ Relative Prior ity ¥ Due By ¥ Cost¥ Doc®
{7 Buy milk Domestic Shopping Jusers/todoapp-admin 1 03-06-2015 Q.75
Q Vacuum house Domestic Housework Jusers/todoapp-admin 2 06-06-2015
{] Mow lawn Domestic Garden Jusers/todoapp-admin 3 09-06-2015
Q Pick uplaundry Domestic Chores Jusers/todoapp-admin 4 09-06-2015 7.50
{] Write blog post Professional Marketing Jusers/todoapp-admin 5 10-06-2015
& Organize brownbag Professional Consulting Jusers/todoapp-admin 6 17-06-2015
{] Sharpen knives Domestic Chores Jusers/todoapp-admin 7 17-06-2015
Q Submit conference session Professional Education Jusers/todoapp-admin 8 24-06-2015
[] Stage Isis release Professional Open Source Jusers/todoapp-admin 9
& Writetopenpal Other Other /users/todoapp-admin 10
Complete -~
Description ¥ Category ¥ Subcategory ¥ Whether this todo item has been completed or not. # AtPath ¥ RelativePriority ¥ DueBy ¥ Cost¥ Doc¥®

8

Apachelsis™ About Change theme «

The grouping of multiple domain services actions within a single drop-down is managed by the
@DomainServicelLayout#imenuOrder () attribute.

110

images/reference-annotations/DomainServiceLayout/menuBar-secondary.png
images/reference-annotations/DomainServiceLayout/menuBar-tertiary.png
../rgant/rgant.pdf#_rgant-DomainServiceLayout_menuOrder

0 The RestfulObjects viewer does not support this attribute.

13.2. menuOrder ()

The menuOrder() attribute determines the ordering of a domain service’s actions as menu items
within a specified menu bar and top-level menu.

The algorithm works as follows:
o first, the menuBar() determines which of the three menu bars the service’s actions should be

rendered

* then, the domain service’s top-level name (typically explicitly specified using named()) is used to
determine the top-level menu item to be rendered on the menu bar

o finally, if there is more than domain service that has the same name, then the menuOrder

attribute is used to order those actions on the menu item drop-down.

For example, the screenshot below shows the "prototyping" menu from the (non-ASF) Isis addons'
todoapp:

Activity ~ Security ~ Prototyping ~ & Hitodoapp-admin~

¥ Run Fixture Script

& Recreate To Do Items Then Open Dashboard \h

. Set subscriber behaviour

m E Table ~
(&' Go To Docs

has been completed or not. s 2 I ¥ Cost¥ Doc*®

& Download Translations

no o . 12015 075
& Switch To Reading Translations

il 2015

/| & Download Meta Model l2015
& Download Layouts

A 12015 7.50
= Rebuild Services Meta Model

Hlism 37 soruapp aunin ozowe 2015

fusers/todoapp-admin 6 17-06-2015

= a7 As Anar

The Wicket viewer automatically places separators between actions from different domain
services. From this we can infer that there are actually five different domain services that are all
rendered on the "prototyping" top-level menu.

One of these is the todoapp’s DemoDomainEventSubscriptions service:

111

../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-DomainServiceLayout_menuBar
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp
images/reference-annotations/DomainServiceLayout/menuOrder.png
../ugvw/ugvw.pdf

@DomainService(
nature = NatureOfService.VIEW _MENU_ONLY

)

@DomainServicelayout(
menuBar = MenuBar.SECONDARY,
named = "Prototyping", ®
menuOrder = "500.20") @
public class DemoDomainEventSubscriptions {
@ActionLayout(named="Set subscriber behaviour")
@MemberOrder(sequence = "500.20.1") ©)
public void subscriberBehaviour(...) { ... }

@ render on the "Prototyping” menu
@ positioning relative to other service’s on the "Prototyping” menu

® by convention (nothing more) the @MemberOrder#sequence() attribute continues the same Dewey
decimal sequence format (a simple string "1" could in fact have been used instead)

while others come from services provided by Apache Isis itself, eg:

@DomainServicelayout(

named = "Prototyping", @D
menuBar = MenuBar.SECONDARY,
menuOrder = "500.500" @)
)
public class MetaModelServicesMenu {
@MemberOrder (sequence="500.500.1") ®
public Clob downloadMetaModel(...) { ... }
}

@ render on the "Prototyping" menu

@ positioning relative to other service’s on the "Prototyping” menu; this appears after the
DemoDomainEventSubscriptions service shown above

® by convention (nothing more) the @MemberOrder#sequence() attribute continues the same Dewey
decimal sequence format (a simple string "1", "2", "3", ... could in fact have been used instead)

13.3. named()

The named() attribute explicitly specifies the domain service’s name, overriding the name that
would normally be inferred from the Java source code. This attribute can also be specified for
actions, collections, properties, parameters, domain objects and view models.

112

../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_named

The value of this attribute also has an important role to play in the positioning of
the domain service’s actions relative to the actions of other domain services. See
menuOrder () for a full discussion with examples.

For example:

@DomainService
@DomainServicelLayout(
named="Customers"

)

public class CustomerRepository {

113

../rgant/rgant.pdf#_rgant-DomainServiceLayout_menuOrder

Chapter 14. @Facets

The @Facets annotation allows FacetFactory implementations and so can be used to run install
arbitrary Facet's for a type. Generally this is not needed, but can be useful for overriding a
custom programming model where a ‘FacetFactory is not typically included.

0 FacetFactory is an important internal API that is used by Apache Isis to

114

Chapter 15. @HomePage

The @HomePage annotation allows a single (no-arg, query-only) action on a single domain service to
be nominated as the action to invoke for the default home page. This often returns a view model
that acts as some sort of dashboard, presenting key information and makeing the most commonly
used actions easy to invoke.

For example, the (non-ASF) Isis addons' todoapp uses @HomePage to return a dashboard of todo items
to complete:

7 = - cER

B Dashboard x O
&« C' A | [} localhost:8080/wicket/entity?3 »| =
ToDo App ToDos - Analysis - Activity ~ Security ~ Prototyping - & Hitodoapp-admin -
@Dashboard Bk
Not Yet Complete [Export As Xml B Table ~
Description # Category ¥ Subcategory ¥ Whether this todo item has been completed or not. # AtPath $ RelativePriority ¥ DueBy # Cost® Doc @
& Buymik Domestic Shopping /users/todoapp-admin 1 03-06-2015 075
[] Vacuum house Domestic Housework /users/todoapp-admin 2 06-06-2015
& Mowlawn Domestic Garden /users/todoapp-admin 3 09-06-2015
[_] Pick up laundry Domestic Chores /users/todoapp-admin 4 09-06-2015 7.50
& Writeblogpost Professional ~ Marketing /users/todoapp-admin 5 10-06-2015
[] Organize brown bag Professional Consulting /users/todoapp-admin 6 17-06-2015
Q Sharpen knives Domestic Chores /users/todoapp-admin 7 17-06-2015
‘5' Submit conference session Professional Education /users/todoapp-admin 8 24-06-2015
Q StageIsis release Professional ~ Open Source /users/todoapp-admin 9
‘5' ‘Write to penpal Other Other /users/todoapp-admin 10
Complete B Table ~
Description % Category ¥ Subcategory # Whether this todo item has been completed or not. # AtPath # RelativePriority % DueBy # Cost # Doc #
2

Apachelsis™ = 1413 x 988
1395 x 897

The corresponding code is:

(nature = NatureOfService.DOMAIN)
public class ToDoAppDashboardService {
(

semantics = SemanticsOf.SAFE

public ToDoAppDashboard lookup() {
return container.injectServicesInto(new ToDoAppDashboard());

private DomainObjectContainer container;

115

http://github.com/isisaddons/isis-app-todoapp
images/reference-annotations/HomePage/HomePage.png

where ToDoAppDashboard is

@DomainObject(nature = Nature.VIEW_MODEL)
public class ToDoAppDashboard {
public String title() { return "Dashboard"; }

public List<ToDoItem> getNotYetComplete() { ... }
public List<ToDoItem> getComplete() { ... }

public Blob exportToWordDoc() { ... } @

@ associated using file-based layout with the notYetComplete collection.

The other two actions shown in the above screenshot—exportAsXml and downloadlLayout —are
actually contributed to the ToDoAppDashboard through various domain services, as is the
downloadlayout action.

116

../ugvw/ugvw.pdf#_ugvw_layout_file-based

Chapter 16. @Inject (javax)

Apache Isis automatically injects domain services into other domain services and also into domain
objects and view models. In fact, it also injects domain services into integration tests and fixture

scripts.

One omission: Apache Isis (currently) does not inject services into
o 0.3a.1.applib.spec.Specification instances (as used by @Property#mustSatisfy()
and @Parameter#mustSatisfy() annotations.

Isis supports several syntaxes for injecting domain services. The simplest uses the
@javax.inject.Inject annotation on the field, as defined in JSR-330.

For example:

public class Customer {
public List<Order> findRecentOrders() { ©)
return orders.recentOrdersFor(this);

}
.inject.Inject
OrderRepository orders; @

® an alternative implementation would be to implement findRecentOrders() as a contributed
action.

@ we recommend default (rather than private) visibility so that unit tests can easily mock out the

service

16.1. Alternative syntaxes

Isis also supports setter-based injection:

public class Customer {

public void setOrderRepository(OrderRepository orderRepository) { ... }

and also supports an additional syntax of using inject::- as the prefix:

public class Customer {

public void injectOrderRepository(OrderRepository orderRepository) { ... }

Generally we recommend using @javax.inject.Inject; it involves less code, and is more

117

../ugtst/ugtst.pdf#_ugtst_integ-test-support
../ugtst/ugtst.pdf#_ugtst_fixture-scripts
../ugtst/ugtst.pdf#_ugtst_fixture-scripts
../rgant/rgant.pdf#_rgant-Property_mustSatisfy
../rgant/rgant.pdf#_rgant-Parameter_mustSatisfy
https://jcp.org/en/jsr/detail?id=330
../ugfun/ugfun.pdf#_ugfun_how-tos_contributed-members
../ugfun/ugfun.pdf#_ugfun_how-tos_contributed-members

immediately familiar to most Java developers.

16.2. Injecting collection of services

It can sometimes be useful to have declared multiple implementations of a particular domain
service. For example, you may have a module that defines an SPI service, where multiple other
modules might provide implementations of that SPI (akin to the chain of responsibility pattern). To
support these scenarios, it is possible to annotate a List or Collection.

For example, suppose that we provide an SPI service to veto the placing of Orders for certain
Customers:

public interface CustomerOrderAdvisorService {

String vetoPlaceOrder(Customer c);
We could then inject a collection of these services:

public class Customer {
public Order placeOrder(Product p, int quantity) { ... }
public String disablePlaceOrder(Product p, int quantity) {
for(CustomerOrderAdvisorService advisor: advisors) {
String reason = advisor.vetoPlaceOrder(this);
if(reason != null) { return reason; }

}
return null;
}
Collection<CustomerOrderAdvisorService> advisors; ©)

@ inject a collection of the services.

An alternative and almost equivalent design would be to publish an event using

0 the EventBusService and implement the domain services as subscribers to the
event. This alternative design is used in the (non-ASF) Incode Platform's poly
module, for example.

16.3. Manually injecting services

Isis performs dependency injection when domain entities are recreated. It will also perform
dependency injection if an object is created through the DomainObjectContainer.

For example, to create a new (transient) domain object, the idiom is:

118

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://platform.incode.org

Customer cust = container.newTransientInstance(Customer.class); @
// initialize state of "cust"
container.persist(cust);

@ where container is an instance of DomainObjectContainer.

View models are created similarly:

ToDoAppDashboard dashboard = container.newViewModelInstance(ToDoAppDashboard.class);

If you prefer, though, you can simply instantiate domain objects using "new" and then inject
domain services manually:

Customer cust = new Customer();
container.injectServicesInto(cust);
// initialize state of "cust"
container.persist(cust);

or if you prefer:

Customer cust = container.injectServicesInto(new Customer());
// initialize state of "cust"
container.persist(cust);

There is one subtle difference between using

DomainObjectContainer#newTransientInstance(:) and

DomainObjectContainer#injectServicesInto(:-), in that with the former Apache
o Isis will automatically initialize all fields to their default values.

This isn’t a particular useful feature (and indeed can sometimes be rather
confusing) so you may well wish to standardize on using injectServicesInto(::")
throughout.

119

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer

Chapter 17. @MemberGrouplLayout

The @MemberGroupLayout annotation specifies how an object’s properties and collections are grouped
together into columns, also specifying the relative positioning of those columns. It works in
conjunction with the @MemberOrder annotation.

The @MemberOrder annotation is used to specify the relative order of domain object members, that is:
properties, collections and actions. It works in conjunction with the @MemberGroupLayout annotation.

The annotation defines two attributes, name() and sequence(). Broadly speaking the name() attribute
is used to group or associate members together, while the sequence() attribute orders members
once they have been grouped.

o As this is an important topic, there is a separate chapter that discussed object
layout in full.

120

../rgant/rgant.pdf#_rgant-MemberOrder
../rgant/rgant.pdf#_rgant-MemberGroupLayout
../ugvw/ugvw.pdf#_ugvw_layout

Chapter 18. @MemberOrder

The @MemberOrder annotation is used to specify the relative order of domain object members, that is:
properties, collections and actions. It works in conjunction with the @MemberGroupLayout annotation.

The annotation defines four attributes:

» columnSpans() —of type int[] —which specifies the relative column sizes of the three columns
that render properties as well as a fourth column that renders only collections

o left() —of type String[] - that specifies the order of the property groups (inferred from
@MemberOrder#name()) as applied to properties) in the left-most column

* middle() — of type String[] - that specifies the order of the property groups (if any) as applied to
properties) in the middle column

* right() —of type String[] - that specifies the order of the property groups (if any) as applied to
properties) in the right-most column

Collections are always rendered in the "last" column. This can appear either below the columns

holding properties (if their column spans = 12), or can be rendered to the right of the property

columns (if the spans of the property columns come to <12 leaving enough room for the span of the
collection column).

!

As this is an important topic, there is a separate chapter that discussed object
layout in full.

The annotation is one of a handful (others including @Collection,
@CollectionLayout, @Property) and @PropertylLayout that can also be applied to the
field, rather than the getter method. This is specifically so that boilerplate-
busting tools such as Project Lombok can be used.

121

../rgant/rgant.pdf#_rgant-MemberGroupLayout
../ugvw/ugvw.pdf#_ugvw_layout
../rgant/rgant.pdf#_rgant-Collection
../rgant/rgant.pdf#_rgant-CollectionLayout
../rgant/rgant.pdf#_rgant-Property
../rgant/rgant.pdf#_rgant-PropertyLayout
https://projectlombok.org/

Chapter 19. @Mixin

The @Mixin annotation indicates that the class acts as a mixin, contributing behaviour - actions,
(derived) properties and (derived) collections - to another domain object.

Mixins were originally introduced as a means of allowing contributions from one module to the
types of another module; in such cases the mixin type is often an interface type (eg DocumentHolder)
that might be implemented by numerous different concrete types. However, mixins are also a
convenient mechanism for grouping functionality even for a concrete type.

For further discussion on using mixins, see mixins in the user guide.
The table below summarizes the annotation’s attributes.

Table 16. @Mixin attributes

Attribute Values (default) Description
method() Method name within How to recognize the "reserved" method name,
the mixin meaning that the mixin’s own name will be

inferred from the mixin type. Typical examples

nwon "o non

are "exec", "execute"”, "invoke", "apply" and so
on. The default "reserved" method name is $$.

An alternative and equivalent approach is to use the @DomainObject#nature() annotation with a
nature of MIXIN.

19.1. method()

The method() attribute specifies the name of the method to be treated as a "reserved" method name,
meaning that the mixin’s name should instead be inferred from the mixin’s type.

For example:

public class Customer {

(method="execute")
public static class placeOrder {

Customer customer;
public placeOrder(Customer customer) { this.customer = customer; }

public Customer execute(Product p, int quantity) { ... }

public String disableExecute() { ... }
public String validate@Execute() { ... }

122

../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins
../rgant/rgant.pdf#_rgant-Mixin_method
../rgant/rgant.pdf#_rgant-DomainObject_nature

This allows all mixins to follow a similar convention, with the name of the mixin inferred entirely
from its type ("placeOrder").

When invoked programmatically, the code reads:

mixin(Customer.placeOrder.class, someCustomer).execute(someProduct, 3);

123

Chapter 20. @Nullable (javax)

Apache Isis' defaults for properties and parameters is that they are mandatory unless otherwise
stated. The @javax.annotation.Nullable annotation is recognized by Apache Isis for both properties
and parameters as means to indicate that the property/parameter is not mandatory.

For example:

.annotation.Nullable
public String getName() {
return name;
}
public void setName(final String name) {
this.name = name;

ks
or:
public Customer updateName(.annotation.Nullable final String name) {
setName(name);
return this;
}

Apache Isis does provide several other ways to specify optionality: wusing the
@Property#optionality() / @Parameterfoptionality() annotation. For properties, the optionality can
also be inferred from the @Column#fallowsNull() attribute.

See the @Propertyf#foptionality() documentation for a much fuller discussion on
the relationship between wusing the Apache Isis annotations vs
@Column#allowsNull().

If more than one method is specified then the framework will validate that there are no

incompatibilities (and fail to boot otherwise). This can also be verified using the validate goal of the
Apache Isis Maven plugin.

124

../rgant/rgant.pdf#_rgant-Property_optionality
../rgant/rgant.pdf#_rgant-Parameter_optionality
../rgant/rgant.pdf#_rgant-Column_allowsNull
../rgant/rgant.pdf#_rgant-Property_optionality
../rgant/rgant.pdf#_rgant-Column_allowsNull
../rgmvn/rgmvn.pdf#_rgmvn_validate

Chapter 21. @NotPersistent (javax.jdo)

The @javax.jdo.annotation.NotPersistent annotation is used by JDO/DataNucleus to indicate that a
property should not be persisted to the database.

Apache Isis also uses this annotation, though (currently) only in the very minimal way to suppress
checking of inconsistent metadata between JDO and Isis annotations (eg @Column#fallowsNull() vs
@Property#optionality(), or @Column#length() and @Property#maxLength()).

Isis parses the @NotPersistent annotation from the Java source code; it does not
query the JDO metamodel. This means that it the @NotPersistent annotation must
be used rather than the equivalent <field> XML metadata.

i

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

125

http://www.datanucleus.org/products/accessplatform_4_0/jdo/fields_properties.html

Chapter 22. gMinLength

The @MinLength annotation is used to specify the minimum number of characters in a search of an
autoComplete () supporting method.

For example:

public ToDoItem add(
(20)
final ToDoItem toDoItem) {
getDependencies().add(toDoltem);
return this;

}
public List<ToDoItem> autoComplete@Add(

final (2)
String search) {
final List<ToDoItem> list = toDoItems.autoComplete(search);
list.removeAll(getDependencies());
list.remove(this);
return list;

The "@Parameter(minLength=...) e can also be used (even though strictly speaking the search
argument is not a parameter of the action).

126

../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_autoComplete

Chapter 23. @Parameter

The @Parameter annotation applies to action parameters collecting together all domain semantics
within a single annotation.

The table below summarizes the annotation’s attributes.

Table 17. @Paramter attributes

Attribute Values (default) Description
fileAccept() Media type or file Hints the file type to be uploaded for Blob or
extension Clob.

Note that this does not prevent the user from
uploading some other file type; rather it merely
defaults the file type in the file open dialog.

maxLength() Positive integer maximum number of characters for string
parameters; ignored otherwise

minLength() Positive integer Deprecated; use <a
href="../rgant/rgant.pdf#rgant-
MinLength"><code>@MinLength</code>
instead.
 Can be used to specify the
minimum length for <a
href="../rgcms/rgcms.pdf#_rgcms_methods_prefi
xes_autoComplete"><code>autoComplete…
;​()</code> supporting method; but
because this _is a supporting method
rather than the action method itself, we now feel
it is misleading to use the
<code>@Parameter</code> annotation in this

situation.
mustSatisfy() implementation of allows arbitrary validation to be applied
0.a.i.applib.spec.Spec
ification
optionality() MANDATORY, OPTIONAL specifies a parameter is optional rather than
(MANDATORY) mandatory
regexPattern() regular expression validates the contents of a string parameter
against the regular expression pattern
regexPatternFlags() value of flags as modifies the compilation of the regular
normally passed to expression

java.util.regex.
Pattern#ficompile(::)

regexPatternReplacemen Unused.

t()

For example:

127

../rgant/rgant.pdf#_rgant-Parameter_fileAccept
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Blob
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Clob
../rgant/rgant.pdf#_rgant-Parameter_maxLength
../rgant/rgant.pdf#_rgant-Parameter_mustSatisfy
../rgant/rgant.pdf#_rgant-Parameter_optionality
../rgant/rgant.pdf#_rgant-Parameter_regexPattern

public class Customer {
public static class EmailSpecification extends AbstractSpecification<String> {
public String satisfiesSafely(String proposed) {
return EmailUtil.ensureValidEmail(proposed); ©)
}
}
@Action(semantics=SemanticsOf.IDEMPOTENT)
public Customer updateEmail(
@Parameter(
maxLength=30,
mustSatisfy=EmailSpecification.class,
optionality=Optionality.OPTIONAL,
regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
regexPatternFlags=Pattern.CASE_INSENSITIVE
)
@ParameterLayout(named="New Email Address")
final String newEmailAddress

@ the (fictitious) EmailUtil.ensureValid(::) (omitted for brevity) returns a string explaining if an
email is invalid

23.1. fileAccept()

The fileAccept() attribute applies only to Blob or Clob parameters, indicating the type of file to
accept when uploading a new value. The attribute is also supported on properties.

For example:

public class Scanner {
public ScannedDocument newScan(
@Parameter (fileAccept="image/*") ®
@ParameterLayout(named="Scanned image") @
final Blob scannedImage) {

@ as per reference docs, either a media type (such as image/*) or a file type extension (such as
.png).

@ the @ParameterLayout(named=--+) attribute is required for Java 7; for Java 8 it can be omitted if the
(non-ASF) Incode Platform's paraname8 metamodel extension is used.

128

../rgcms/rgcms.pdf#_rgcms_classes_value-types_Blob
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Clob
../rgant/rgant.pdf#_rgant-Property_fileAccept
http://www.w3schools.com/tags/att_input_accept.asp
http://platform.incode.org

23.2. maxLength()

The maxLength() attribute applies only to String parameters, indicating the maximum number of
characters that the user may enter (for example in a text field in the UI). It is ignored if applied to
parameters of any other type. This attribute can also be applied to properties.

For example:

public class CustomerRepository {
public Customer newCustomer(

@Parameter(maxLength=30)
@ParameterLayout(named="First Name") @
final String firstName,
@Parameter(maxLength=50)
@ParameterLayout(named="Last Name")
final String lastName) {

@ the @ParameterLayout(named=--+) attribute is required for Java 7; for Java 8 it can be omitted if the
(non-ASF) Incode Platform's paraname8 metamodel extension is used.

23.3. mustSatisfy()

The mustSatisfy() attribute allows arbitrary validation to be applied to parameters using an
(implementation of a) org.apache.isis.applib.spec.Specification object. The attribute is also
supported on properties.

Q The specification implementations can (of course) be reused between parameters
and properties.

The Specification is consulted during validation, being passed the proposed value. If the proposed
value fails, then the value returned is the used as the invalidity reason.

For example:

129

../rgant/rgant.pdf#_rgant-Property_maxLength
http://platform.incode.org
../rgant/rgant.pdf#_rgant-Property_mustSatisfy
../rgant/rgant.pdf#_rgant-Property_mustSatisfy

public class StartWithCapitalletterSpecification
extends AbstractSpecification<String> { @
public String satisfiesSafely(String proposed) {
return "".equals(proposed)
? "Empty string"
: ICharacter.isUpperCase(proposed.charAt(0))
? "Does not start with a capital letter"
: null;
}
}
public class CustomerRepository {
public Customer newCustomer(
(
mustSatisfy=StartWithCapitalletterSpecification.class
)

(named="First Name")
final String firstName,

(
mustSatisfy=StartWithCapitalletterSpecification.class

)

(named="Last Name")
final String lastName) {

@ the AbstractSpecification class conveniently handles type-safety and dealing with null values.
The applib also provides SpecificationAnd and SpecificationOr to allow specifications to be
combined "algebraically".

It is also possible to provide translatable reasons. Rather than implement Specification, instead
implement Specification2 which defines the API:

public interface Specification2 extends Specification {
public TranslatableString satisfiesTranslatable(Object obj); @
}

@ Return null if specification satisfied, otherwise the reason as a translatable string

With Specification2 there is no need to implement the inherited satifies(Object); that method will
never be called.

23.4. optionality()

By default, Apache Isis assumes that all parameters of an action are required (mandatory). The
optionality() attribute allows this to be relaxed. The attribute is also supported for properties.

130

../rgant/rgant.pdf#_rgant-Property_optionality

The attribute has no meaning for a primitive type such as int: primitives will

Q always have a default value (e.g. zero). If optionality is required, then use the
corresponding wrapper class (e.g. java.lang.Integer) and annotate with
Parameter#optionality() as required.

The values for the attribute are simply OPTIONAL or MANDATORY.
For example:
public class Customer {

public Order placeOrder(
final Product product,

(named = "Quantity")
final int quantity,
(optionality = Optionality.OPTIONAL)
(named = "Special Instructions")

final String instr) {

0 It is also possible to specify optionality using @Nullable annotation.

23.5. regexPattern()

There are three attributes related to enforcing regular expressions:

» The regexPattern() attribute validates the contents of any string parameter with respect to a
regular expression pattern. It is ignored if applied to parameters of any other type. This
attribute can also be specified for properties.

* The regexPatternFlags() attribute specifies flags that modify the handling of the pattern. The
values are those that would normally be passed to
java.util.regex.Pattern#icompile(String,int).

* The related regexPatternReplacement() attribute specifies the error message to show if the
provided argument does not match the regex pattern.

For example:

131

../rgant/rgant.pdf#_rgant-Nullable
../rgant/rgant.pdf#_rgant-Property_regexPattern

public class Customer {
public void updateEmail(
@Parameter (
regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
regexPatternFlags = Pattern.CASE_INSENSITIVE,
regexPatternReplacement = "Must be valid email address (containing a
'@') symbol" @
)
@ParameterLayout(named = "Email")
final String email) {

@ Note that there is currently no i18n support for this phrase.

132

Chapter 24. @ParameterlLayout

The @ParameterLayout annotation applies to action parameters, collecting together all UI hints within

a single annotation.

The table below summarizes the annotation’s attributes.

Table 18. @ParameterlLayout attributes

Attribute Values (default)
cssClass() Any string valid as a
CSS class
describedAs() String
labelPosition() LEFT, TOP, RIGHT, NONE
(LEFT)
multiline() Positive integer
named() String
namedEscaped() true, false (true)

renderedAsDayBefore()

typicallength()

For example:

Description

the css class that a parameter should have, to
allow more targetted styling in application.css

description of this parameter, eg to be rendered
in a tooltip.

in forms, the positioning of the label relative to
the property value.

Default is LEFT, unless multiline in which case
TOP. The value RIGHT is only supported for
boolean parameters.

for string parameters, render as a text area over
multiple lines.
If set > 1, then then labelPosition defaults to TOP.

the name of this parameter.

For Java 7 this is generally required. For Java 8,
the name can often be inferred from the code so
this attribute allows the name to be overridden.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

whether to HTML escape the name of this
parameter.

for date parameters only, render the date as one
day prior to the actually stored date (eg the end
date of an open interval into a closed interval)

the typical entry length of a field, use to
determine the optimum width for display

133

../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_labelPosition
../rgant/rgant.pdf#_rgant-ParameterLayout_multiLine
../rgant/rgant.pdf#_rgant-ParameterLayout_multiLine
../rgant/rgant.pdf#_rgant-ParameterLayout_labelPosition
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_renderedAsDayBefore
../rgant/rgant.pdf#_rgant-ParameterLayout_typicalLength

public class ToDoltem {
public ToDoItem updateDescription(
@ParameterLayout(
cssClass="x-key",
describedAs="What needs to be done",
labelPosition=LabelPosition.LEFT,
named="Description of this <i>item</i>",
namedEscaped=false,
typicallength=80)
final String description) {
setDescription(description);
return this;

Note that there is (currently) no support for specifying UI hints for domain
services through the dynamic .layout.json file (only for properties, collections
and actions are supported).

24.1. cssClass()

The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the action parameter. Application-specific CSS can then be used to target
and adjust the Ul representation of that particular element.

This attribute can also be applied to domain objects, view models, actions properties, collections
and parameters.

For example:

public class ToDoItem {
public ToDoItem postpone(
@ParameterLayout(
named="until",
cssClass="x-key"

)
LocalDate until

){ ...}

24.2. describedAs()

The describedAs() attribute is used to provide a short description of the action parameter to the
user. In the Wicket viewer it is displayed as a 'tool tip’. The describedAs() attribute can also be

134

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../ugvw/ugvw.pdf

specified for collections, properties, actions, domain objects and view models.

Descriptions may be provided for objects, members (properties, collections and actions), and for
individual parameters within an action method. @DescribedAs therefore works in a very similar
manner to @Named <!--(see ?)-—.

To provide a description for an individual action parameter, use the @DescribedAs annotation in-line
i.e. immediately before the parameter declaration.

For example:

public class Customer {
public Order placeOrder(
Product product,
(

named="Quantity",
describedAs="The quantity of the product being ordered"

)
int quantity) {

24.3. labelPosition()

The 1labelPosition() attribute determines the positioning of labels for parameters. This attribute
can also be specified for properties.

The positioning of labels is typically LEFT, but can be positioned to the TOP. The one exception is
multiline() string parameters, where the label defaults to TOP automatically (to provide as much
real-estate for the multiline text field as possible).

For boolean parameters a positioning of RIGHT is also allowed; this is ignored for all other types.
It is also possible to suppress the label altogether, using NONE.

For example:

135

../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs
../rgant/rgant.pdf#_rgant-ViewModelLayout_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_labelPosition
../rgant/rgant.pdf#_rgant-ParameterLayout_multiLine

public class Order {
public Order changeStatus(
OrderStatus newStatus
@Parameter(
optionality=Optionality.OPTIONAL

)
@ParameterLayout(
named="Reason",
labelPosition=LabelPosition.TOP
)

String reason) {

To get an idea of how these are rendered (in the Wicket viewer), see
PropertyLayout#labelPosition().

24.4. multiline()

The multiline() attribute specifies that the text field for a string parameter should span multiple
lines. Itisignored for other parameter types. The attribute is also supported for properties.

For example:

public class BugReport {
public BugReport updateStepsToReproduce(
@Parameter(named="Steps")
@ParameterLayout(
numberO0fLines=10

)
final String steps) {

0 If set > 1 (as would normally be the case), then the default 1abelPosition defaults
to TOP (rather than LEFT, as would normally be the case).

24.5. named()

The named() attribute explicitly specifies the action parameter’s name. This attribute can also be
specified for actions, collections, properties, domain objects, view models and domain services.

Unlike most other aspects of the Apache Isis metamodel, the name of method parameters cannot

136

../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-PropertyLayout_labelPosition
../rgant/rgant.pdf#_rgant-PropertyLayout_multiLine
../rgant/rgant.pdf#_rgant-ParameterLayout_labelPosition
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_named
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named

(prior to Java 8, at least) be inferred from the Java source code. Without other information, Apache
Isis uses the object’s type (int, String etc) as the name instead. This can be sufficient for application-
specific reference types (eg ToDoItem) but is generally not sufficient for primitives and other value

types.

The named() attribute (or the deprecated @Named annotation) is therefore often required to specify
the parameter name.

As of Java 8, the Java reflection API has been extended. The (non-ASF) Incode Platform's paraname8
metamodel extension provides support for this. Note that your application must (obviously) be
running on Java 8, and be compiled with the -parameters compile flag for javac.

By default the name is HTML escaped. To allow HTML markup, set the related namedEscaped()
attribute to false.

For example:

public class Customer {
public Order placeOrder(
final Product product
, (named="Quantity")
final int quantity) {
Order order = newTransientInstance(Order.class);
order.modifyCustomer(this);
order.modifyProduct(product);
order.setQuantity(quantity);
return order;

Q The framework also provides a separate, powerful mechanism for
internationalization.

24.6. renderedAsDayBefore()

The renderedAsDayBefore() attribute applies only to date parameters whereby the date will be
rendered as the day before the value actually held in the domain object. It is ignored for
parameters of other types. This attribute is also supported for properties.

This behaviour might at first glance appear odd, but the rationale is to support the use case of a
sequence of instances that represent adjacent intervals of time. In such cases there would typically
be startDate and endDate properties, eg for all of Q2. Storing this as a half-closed interval —eg [1-
Apr-2015, 1-July-2015) — can substantially simplify internal algorithms; the endDate of one interval
will correspond to the startDate of the next.

However, from an end-user perspective the requirement may be to render the interval as a fully
closed interval; eg the end date should be shown as 30-Jun-2015.

137

../rgant/rgant.pdf#_rgant-aaa_deprecated
../rgant/rgant.pdf#_rgant-aaa_deprecated
http://platform.incode.org
../ugbtb/ugbtb.pdf#_ugbtb_i18n
../rgant/rgant.pdf#_rgant-PropertyLayout_renderedAsDayBefore

This attribute therefore bridges the gap; it presents the information in a way that makes sense to an
end-user, but also stores the domain object in a way that is easy work with internally.

For example:

public class Tenancy {
public void changeDates(
(named="Start Date")
LocalDate startDate,
(

named="End Date",
renderedAsDayBefore=true

)
LocalDate endDate) {

24.7. typicallength()

The typicallength() attribute indicates the typical length of a string parameter. It is ignored for
parameters of other types. The attribute is also supported for properties.

The information is intended as a hint to the UI to determine the space that should be given to
render a particular string parameter. That said, note that the Wicket viewer uses the maximum
space available for all fields, so in effect ignores this attribute.

For example:

public class Customer {
public Customer updateName(
(maxLength=30)
(
named="First name",
typicallength=20
)
final String firstName,
(maxLength=30)
(
named="Last name",
typicallength=20
)
final String lastName) {

138

../rgant/rgant.pdf#_rgant-PropertyLayout_typicalLength
../ugvw/ugvw.pdf

Chapter 25. @PersistenceCapable (javax.jdo)

The @javax.jdo.annotation.PersistenceCapable is used by JDO/DataNucleus to indicate that a class is
a domain entity to be persisted to the database.

Apache Isis also checks for this annotation, and if the @PersistenceCapablefischema() attribute is
present will use it to form the object type.

Isis parses the @PersistenceCapable annotation from the Java source code; it does
not query the JDO metamodel. This means that it the @PersistenceCapable
annotation must be used rather than the equivalent <class> XML metadata.

i

Moreover, while JDO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

This value is used internally to generate a string representation of an objects identity (the 0id). This
can appear in several contexts, including:

* as the value of Bookmark#igetObjectType() and in the toString() value of Bookmark (see
BookmarkService)

* and thus in the "table-of-two-halves" pattern, as per the (non-ASF) Incode Platform's poly
module

* in the serialization of 0idDto in the command and interaction schemas
* in the URLs of the RestfulObjects viewer
* in the URLs of the Wicket viewer (in general and in particular if copying URLS)

* in XML snapshots generated by the XmlSnapshotService

The actual format of the object type used by Apache Isis for the concatenation of schema() and
@PersistenceCapablefitable(). If the table() is not present, then the class' simple name is used
instead.

25.1. Examples

For example:

.jdo.annotations.PersistenceCapable(schema="custmgmt")
public class Customer {

}

has an object type of custmgmt.Customer, while:

139

http://www.datanucleus.org/products/accessplatform_4_0/jdo/class_mapping.html
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
http://platform.incode.org
../rgcms/rgcms.pdf#_rgcms_schema-cmd
../rgcms/rgcms.pdf#_rgcms_schema-ixn
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf
../ugvw/ugvw.pdf#_ugvw_features_hints-and-copy-url
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_XmlSnapshotService

.jdo.annotations.PersistenceCapable(schema="custmgmt", table="Address")
public class AddressImpl {

}

has an object type of custmgmt.Address.
On the other hand:

.jdo.annotations.PersistenceCapable(table="Address")
public class AddressImpl {

}

does not correspond to an object type, because the schema() attribute is missing.

25.2. Precedence

The rules of precedence for determining a domain object’s object type are:

1. @Discriminator

2. @DomainObject#objectType

3. @PersistenceCapable, if at least the schema attribute is defined.

If both schema and table are defined, then the value is “schema.table”. If only schema is defined,
then the value is “schema.className”.

4. Fully qualified class name of the entity.

This might be obvious, but to make explicit: we recommend that you always
specify an object type for your domain objects.

Q Otherwise, if you refactor your code (change class name or move package), then
any externally held references to the OID of the object will break. At best this will
require a data migration in the database; at worst it could cause external clients
accessing data through the Restful Objects viewer to break.

If the object type is not unique across all domain classes then the framework will
0 fail-fast and fail to boot. An error message will be printed in the log to help you
determine which classes have duplicate object tyoes.

140

../rgant/rgant.pdf#_rgant-Discriminator
../rgant/rgant.pdf#_rgant-PersistenceCapable
../ugvro/ugvro.pdf

Chapter 26. @PostConstruct (javax)

The @javax.annotation.PostConstruct annotation, as defined in JSR-250, is recognized by Apache
Isis as a callback method on domain services to be called just after they have been constructed, in
order that they initialize themselves.

It is also recognized for view models (eg annotated with @ViewModel).

For the default application-scoped (singleton) domain services, this means that the method, if
present, is called during the bootstrapping of the application. For @RequestScoped domain services,
the method is called at the beginning of the request.

The signature of the method is:

O]
public void init() { ... } @)

@ It is not necessary to annotate the method with @Programmatic; it will be automatically excluded
from the Apache Isis metamodel.

@ the method can have any name, but must have public visibility.

In the form shown above the method accepts no arguments. Alternatively - for domain services
only, not view models - the method can accept a parameter of type Map<String,String>:

public void init(Map<String,String> properties) { ... }

Isis uses argument to pass in the configuration properties read from all configuration files:
Alternatively, you could inject DomainObjectContainer into the service and read
Q configuration properties using DomainObjectContainer#getProperty(::-) and
related methods. Note that when using this latter API only those configuration

properties prefixes application. key are provided.

A common use case is for domain services that interact with the EventBusService. For example:

141

https://jcp.org/en/jsr/detail?id=250
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../rgant/rgant.pdf#_rgant-ViewModel
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-Programmatic
../rgcfg/rgcfg.pdf#_rgcfg_configuration-files
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService

(nature=NatureOfService.DOMAIN)
public class MySubscribingService {

public void postConstruct() {
eventBusService.register(this);

}

public void preDestroy() {
eventBusService.unregister(this);

}

.inject.Inject
EventBusService eventBusService;

Q In this particular use case, it is generally simpler to just subclass from
AbstractSubscriber.

Other use cases include obtaining connections to external datasources, eg subscribing to an
ActiveMQ router, say, or initializing/cleaning up a background scheduler such as Quartz.

See also @PreDestroy

142

../rgcms/rgcms.pdf#_rgcms_classes_super_AbstractSubscriber
../rgant/rgant.pdf#_rgant-PreDestroy

Chapter 27. @PreDestroy (javax)

The @javax.annotation.PreDestroy annotation, as defined in JSR-250, recognized by Apache Isis as a
callback method on domain services to be called just as they go out of scope.

For the default application-scoped (singleton) domain services, this means that the method, if
present, is called just prior to the termination of the application. For @RequestScoped domain
services, the method is called at the end of the request.

The signature of the method is:

O]
public void deinit() { ... } @

@ It is not necessary to annotate the method with @Programmatic; it will be automatically excluded
from the Apache Isis metamodel.

@ the method can have any name, but must have public visibility, and accept no arguments.

A common use case is for domain services that interact with the EventBusService. For example:

(nature=NatureQfService.DOMAIN)
public class MySubscribingService {

public void init() {
eventBusService.register(this);

}

public void deinit() {
eventBusService.unregister(this);

}

.inject.Inject
EventBusService eventBusService;

Q In this particular use case, it is generally simpler to just subclass from
AbstractSubscriber.

Other use cases include obtaining connections to external datasources, eg subscribing to an
ActiveMQ router, say, or initializing/cleaning up a background scheduler such as Quartz.

See also @PostConstruct

143

https://jcp.org/en/jsr/detail?id=250
../rgant/rgant.pdf#_rgant-RequestScoped
../rgant/rgant.pdf#_rgant-Programmatic
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgcms/rgcms.pdf#_rgcms_classes_super_AbstractSubscriber
../rgant/rgant.pdf#_rgant-PostConstruct

Chapter 28. @PrimaryKey (javax. jdo)

The @javax.jdo.annotation.PrimaryKey annotation is used by JDO/DataNucleus to indicate that a
property is used as the primary Kkey for an entity with application-managed identity.

Apache Isis also uses this annotation in a very minimal way: to ensure that the framework’s own
logic to initialize newly instantiated objects (eg using
DomainObjectContainer#newTransientInstance(:-+) does not touch the primary key, and also to ensure
that the primary key property is always disabled (read-only).

Isis parses the @NotPersistent annotation from the Java source code; it does not
query the JDO metamodel. This means that it the @NotPersistent annotation must
be used rather than the equivalent <field> XML metadata.

i

Moreover, while J]DO/DataNucleus will recognize annotations on either the field
or the getter method, Apache Isis (currently) only inspects the getter method.
Therefore ensure that the annotation is placed there.

144

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_DomainObjectContainer
http://www.datanucleus.org/products/accessplatform_4_0/jdo/application_identity.html

Chapter 29. @Programmatic

The @Programmatic annotation causes the method to be excluded completely from the Apache Isis
metamodel. This means it won’t appear in any Ul, and it won’t appear in any mementos or
snapshots.

A common use-case is to ignore implementation-level artifacts. For example:

public class Customer implements Comparable<Customer> {

public int compareTo(Customer c) {
return getSalary() - c.getSalary();

}

Note that @Programmatic does not simply imply @Hidden; it actually means that the class member will
not be part of the Apache Isis metamodel.

145

../rgsvc/rgsvc.pdf#_rgsvc_integration-api_MementoService
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_XmlSnapshotService

Chapter 30. @Property

The @Property annotation applies to properties collecting together all domain semantics within a
single annotation.

It is also possible to apply the annotation to actions of domain services that are acting as
contributed properties.

Table 19. @Property attributes

Attribute Values (default) Description
command () AS_CONFIGURED, ENABLED, whether the property edit should be reified into
DISABLED ao.a.i.applib.
(AS_CONFIGURED) services.command.Command object through the
CommandContext service.
commandExecuteIn() FOREGROUND,BACKGROUND whether to execute the command immediately,
(FOREGROUND) or to persist it (assuming that an appropriate

implementation of CommandService has been
configured) such that a background scheduler
can execute the command asynchronously

commandPersistence() PERSISTED, whether the reified Command (as provided by the
NOT_PERSISTED, CommandContext domain service) should actually
IF_HINTED be persisted (assuming an appropriate
(PERSISTED) implementation of CommandService has been
configured).
commandDtoProcessor() Implementation of If the Command also implements CommandWithDto
CommandDtoProcessor (meaning that it can return a CommandDto, in
interface other words be converted into an XML
(null) memento), then optionally specifies a processor
that can refine this XML.
domainEvent() subtype of the event type to be posted to the
PropertyDomainEvent EventBusService to broadcast the property’s
(PropertyDomainEvent.De business rule checking (hide, disable, validate)
fault) and its modification (before and after).
editing() ENABLED, DISABLED, whether a property can be modified or cleared
AS_CONFIGURED from within the UI
(AS_CONFIGURED)
fileAccept() Media type or file Hints the files to be uploaded to a Blob or Clob.
extension

Note that this does not prevent the user from
uploading some other file type; rather it merely
defaults the file type in the file open dialog.

146

../rgant/rgant.pdf#_rgant-Property_command
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_CommandContext
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_CommandService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_CommandService
../rgant/rgant.pdf#_rgant-Property_domainEvent
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
../rgant/rgant.pdf#_rgant-Property_editing
../rgant/rgant.pdf#_rgant-Property_fileAccept
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Blob
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Clob

Attribute Values (default) Description

hidden() EVERYWHERE, indicates where (in the UI) the property should
OBJECT_FORMS, be hidden from the user.
PARENTED_TABLES,
STANDALONE_TABLES,
ALL_TABLES, NOWHERE

(NOWHERE)
maxLength() maximum number of characters for string
parameters; ignored otherwise
In many/most cases you should however use
@Column#length()
mustSatisfy() implementation of allows arbitrary validation to be applied
0.a.1.applib.spec.Spec
ification
notPersisted() true, false whether to exclude from snapshots.
(false) [WARNING] ==== Property must also be
annotated with
@javax.jdo.annotations.NotPersistent in order
to not be persisted. ====
optionality() specifies a property is optional rather than
mandatory
In many/most cases you should however use
@Column#allowsNull()
regexPattern() regular expression validates the contents of a string parameter
against the regular expression pattern
regexPatternFlags() value of flags as modifies the compilation of the regular
normally passed to expression

java.util.regex.
Patternficompile(::+)

For example:

147

../rgant/rgant.pdf#_rgant-Property_hidden
../rgant/rgant.pdf#_rgant-Property_maxLength
../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Property_mustSatisfy
../rgant/rgant.pdf#_rgant-Property_notPersisted
../rgant/rgant.pdf#_rgant-Property_optionality
../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Property_regexPattern

public class Customer {
public static class EmailSpecification extends AbstractSpecification<String> {
public String satisfiesSafely(String proposed) {
return EmailUtil.ensureValidEmail(proposed); O

}
}
.jdo.annotations.Column(allowsNull="true"))
(
maxLength=30,
minLength=5,
mustSatisfy=EmailSpecification.class,
regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
regexPatternFlags=Pattern.CASE_INSENSITIVE
)

public String getEmailAddress() { ... }
public void setEmailAddress(String emailAddress) { ... }

@ the (fictitious) EmailUtil.ensureValid(:--) (omitted for brevity) returns a string explaining if an
email is invalid

@ generally use instead of the @Property#foptionality() attribute

The annotation is one of a handful (others including @Collection,

Q @CollectionLayout and @PropertylLayout) that can also be applied to the field,
rather than the getter method. This is specifically so that boilerplate-busting tools
such as Project Lombok can be used.

30.1. Command Persistence and Processing

Every property edit (and action invocation for that matter) is automatically reified into a concrete
Command object. The @Property(command=:--, commandXxx=--+) attributes provide hints for the
persistence of that Command object, and the subsequent processing of that persisted command. The
primary use cases for this are to support the deferring the execution of the action such that it can
be invoked in the background, and to replay commands in a master/slave configuration.

30.1.1. Design

The annotation works with (and is influenced by the behaviour of) a number of domain services:

o CommandContext

« CommandService
* BackgroundService and

« BackgroundCommandService

Each property edit is automatically reified by the CommandContext service into a Command object,

148

../rgant/rgant.pdf#_rgant-Collection
../rgant/rgant.pdf#_rgant-CollectionLayout
../rgant/rgant.pdf#_rgant-PropertyLayout
https://projectlombok.org/
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_CommandContext
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_CommandService
../rgsvc/rgsvc.pdf#_rgsvc_spi_BackgroundService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_BackgroundCommandService
../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_CommandContext

capturing details of the target object, the property, the proposed new value fo the property, the user,
a timestamp and so on.

If an appropriate CommandService is configured (for example using (non-ASF) Incode Platform’s
command module), then the Command itself is persisted.

By default, actions are invoked in directly in the thread of the invocation. If there is an
implementation of BackgroundCommandService (as the (non-ASF) Incode Platform's command module
does provide), then this means in turn that the BackgroundService can be used by the domain object
code to programmatically create background Commands.

0 If background Commands are used, then an external scheduler, using headless
access, must also be configured.

30.1.2. command() and commandPersistence()

The command() and “commandPersistence() attributes work together to determine whether a
command will actually be persisted. There inter-relationship is somewhat complex, so is probably
best explained by way of examples:

command() isis.services. command action dirties is command persisted?

C(.Jmmand .proper Persistence() objects?

ties config

property
ENABLED (any) PERSISTED (either) yes
ENABLED (any) IF_HINTED no no
ENABLED (any) IF_HINTED yes yes
ENABLED (any) NOT_PERSISTED (any) no
AS_CONFIGURED all PERSISTED no yes
AS_CONFIGURED all IF_HINTED no no
AS_CONFIGURED all IF_HINTED yes yes
AS_CONFIGURED all NOT_PERSISTED (any) no
AS_CONFIGURED none PERSISTED no no (1)
AS_CONFIGURED none PERSISTED yes yes
AS_CONFIGURED none IF_HINTED no no
AS_CONFIGURED none IF_HINTED yes yes
AS_CONFIGURED none NOT_PERSISTED ng no
AS_CONFIGURED none NOT_PERSISTED yes yes (1)
DISABLED (any) PERSISTED no no (1)
DISABLED (any) PERSISTED yes yes

149

http://platform.incode.org/modules/spi/command/spi-command.html
http://platform.incode.org/modules/spi/command/spi-command.html
http://platform.incode.org
../ugbtb/ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution
../ugbtb/ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution

command() isis.services. command action dirties is command persisted?
command.proper Persistence()

: objects?
ties config
property
DISABLED (any) IF_HINTED no no
DISABLED (any) IF_HINTED yes yes
DISABLED (any) NOT_PERSISTED no no
DISABLED (any) NOT_PERSISTED yes yes (1)

For example:

public class Order {
(

command=CommandReification.ENABLED,
commandPersistence=CommandPersistence.PERSISTED

)
public Product getProduct() { ... }
public void setProduct(Product p) { ... }

As can be seen, whether a command is actually persisted does not always follow the value of the
commandPersistence() attribute. This is because the command() attribute actually determines whether
any command metadata for the action is captured within the framework’s internal metamodel. If
command is DISABLED or does not otherwise apply due to the action’s declared semantics, then the
framework decides to persist a command based solely on whether the action dirtied any objects (as
if commandPersistence() was set to IF_HINTED).

30.1.3. commandExecuteIn()

For persisted commands, the commandExecuteIn() attribute determines whether the Command should
be executed in the foreground (the default) or executed in the background.

Background execution means that the command is not executed immediately, but is available for a
configured BackgroundCommandService to execute, eg by way of an in-memory scheduler such as
Quartz. See here for further information on this topic.

For example:

public class Order {
(

command=CommandReification.ENABLED,
commandExecuteIn=CommandExecuteIn.BACKGROUND
)
public Product getProduct() { ... }
public void setProduct(Product p) { ... }

150

../rgsvc/rgsvc.pdf#_rgsvc_application-layer-spi_BackgroundCommandService
../ugbtb/ugbtb.pdf#_ugbtb_headless-access_BackgroundCommandExecution

will result in the Command being persisted but its execution deferred to a background execution
mechanism. The returned object from this property edit is the persisted Command itself.

30.1.4. commandDtoProcessor()

The commandDtoProcessor() attribute allows an implementation of CommandDtoProcessor to be
specified. This interface has the following API:

public interface CommandDtoProcessor {
CommandDto process(@
Command command, @

CommandDto dto); ©)

® The returned CommandDto. This will typically be the CommandDto passed in, but supplemented in
some way.

@ The Command being processed

® The CommandDto (XML) obtained already from the Command (by virtue of it also implementing
CommandWithDto, see discussion below).

This interface is used by the framework-provided implementations of ContentMappingService for the
REST API, allowing Commands implementations that also implement CommandWithDto to be further
customised as they are serialized out. The primary use case for this capability is in support of
master/slave replication.

* on the master, Commands are serialized to XML. This includes the identity of the target object and
the intended new value of the property.

However, any Blobs and Clobs are deliberately excluded from this XML (they

o are instead stored as references). This is to prevent the storage requirements
for Command from becoming excessive. A CommandDtoProcessor can be provided
to re-attach blob information if required.

* replaying Commands requires this missing parameter information to be reinstated. The
CommandDtoProcessor therefore offers a hook to dynamically re-attach the missing Blob or Clob
argument.

As a special case, returning null means that the command’s DTO is effectively excluded when
retrieving the list of commands. If replicating from master to slave, this effectively allows certain
commands to be ignored. The CommandDtoProcessor.Null class provides a convenience
implementation for this requirement.

0 If commandDtoProcessor () is specified, then command() is assumed to be ENABLED.

For an example application, see Action#icommand().

151

30.2. domainEvent()

Whenever a domain object (or list of domain objects) is to be rendered, the framework fires off
multiple domain events for every property, collection and action of the domain object. In the cases
of the domain object’s properties, the events that are fired are:

* hide phase: to check that the property is visible (has not been hidden)

disable phase: to check that the property is usable (has not been disabled)

validate phase: to check that the property’s arguments are valid (to modify/clear its value)
* pre-execute phase: before the modification of the property

* post-execute: after the modification of the property

Subscribers subscribe through the EventBusService using either Guava or Axon Framework
annotations and can influence each of these phases.

By default the event raised is PropertyDomainEvent.Default. For example:

public class ToDoltem {

O
public LocalDate getDueBy() { ... }

The domainEvent() attribute allows a custom subclass to be emitted allowing more precise
subscriptions (to those subclasses) to be defined instead. This attribute is also supported for
actions and properties.

For example:

public class ToDoltem {
public static class DueByChangedEvent extends PropertyDomainEvent<ToDoItem,
LocalDate> { } @
(domainEvent=ToDoItem.DueByChangedEvent)
public LocalDate getDueBy() { ... }

@ inherit from PropertyDomainEvent<T,P> where T is the type of the domain object being interacted
with, and P is the type of the property (LocalDate in this example)

The benefit is that subscribers can be more targetted as to the events that they subscribe to.

The framework provides a no-arg constructor and will initialize the domain event

O using (non-API) setters rather than through the constructor. This substantially
reduces the boilerplate in the subclasses because no explicit constructor is
required..

152

../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
https://github.com/google/guava
http://www.axonframework.org/
../rgant/rgant.pdf#_rgant-Action_domainEvent
../rgant/rgant.pdf#_rgant-Property_domainEvent

30.2.1. Subscribers

Subscribers (which must be domain services) subscribe using either the Guava API or (if the
EventBusService has been appropriately configured) using the Axon Framework API. The examples

below use the Guava API.

Subscribers can be either coarse-grained (if they subscribe to the top-level event type):

(nature=NatureQfService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(PropertyDomainEvent ev) {

}

or can be fine-grained (by subscribing to specific event subtypes):

(nature=Nature0fService.DOMAIN)
public class SomeSubscriber extends AbstractSubscriber {
.google.common.eventbus.Subscribe
public void on(ToDoItem.DueByChangedEvent ev) {

}

If the AxonFramework is being used,
Q @com.google.common.eventbus.Subscribe
@org.axonframework.eventhandling.annotation.EventHandler.

The subscriber’s method is called (up to) 5 times:

» whether to veto visibility (hide)

» whether to veto usability (disable)

* whether to veto execution (validate)

* steps to perform prior to the property being modified

* steps to perform after the property has been modified.

replace
with

The subscriber can distinguish these by calling ev.getEventPhase(). Thus the general form is:

153

https://github.com/google/guava
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_EventBusService
http://www.axonframework.org/

@Programmatic
@com.google.common.eventbus.Subscribe
public void on(PropertyDomainEvent ev) {
switch(ev.getEventPhase()) {
case HIDE:
// call ev.hide() or ev.veto("") to hide the property
break;
case DISABLE:
// call ev.disable("...") or ev.veto("...") to disable the property
break;
case VALIDATE:
// call ev.invalidate("...") or ev.veto("...")
// 1f proposed property value is invalid
break;
case EXECUTING:
break;
case EXECUTED:
break;

It is also possible to abort the transaction during the executing or executed phases by throwing an
exception. If the exception is a subtype of RecoverableException then the exception will be rendered
as a user-friendly warning (eg Growl/toast) rather than an error.

30.2.2. Default, Doop and Noop events

If the domainEvent attribute is not explicitly specified (@is left as its default wvalue,
PropertyDomainEvent.Default), then the framework will, by default, post an event.

If this is not required, then the
isis.reflector.facet.propertyAnnotation.domainEvent.postForDefault configuration property can
be set to "false"; this will disable posting.

On the other hand, if the domainEvent has been explicitly specified to some subclass, then an event
will be posted. The framework provides PropertyDomainEvent.Doop as such a subclass, so setting the
domainEvent attribute to this class will ensure that the event to be posted, irrespective of the
configuration property setting.

And, conversely, the framework also provides PropertyDomainEvent.Noop; if domainEvent attribute is
set to this class, then no event will be posted.

30.2.3. Raising events programmatically

Normally events are only raised for interactions through the Ul. However, events can be raised
programmatically by wrapping the target object using the WrapperFactory service.

154

../rgsvc/rgsvc.pdf#_rgsvc_application-layer-api_WrapperFactory

30.3. editing()

The editing() attribute can be used to prevent a property from being modified or cleared, ie to
make it read-only. This attribute can also be specified for collections, and can also be specified for
the domain object.

The related editingDisabledReason() attribute specifies the a hard-coded reason why the property
cannot be modified directly.

Whether a property is enabled or disabled depends upon these factors:

* whether the domain object has been configured as immutable through the
@DomainObject#editing() attribute

* else (that is, if the domain object’s editability is specified as being
<code>AS_CONFIGURED</code>), then the value of the configuration property
<code>isis.objects.editing</code>. If set to <code>false</code>, then the object’s
properties (and collections) are _not editable

* else, then the value of the @Property(editing=--) attribute itself

* else, the result of invoking any supporting disable::-() supporting methods

Thus, to make a property read-only even if the object would otherwise be editable, use:

public class Customer {

(
editing=Editing.DISABLED,
editingDisabledReason="The credit rating is derived from multiple factors"

)
public int getInitialCreditRating(){ ... }
public void setInitialCreditRating(int initialCreditRating) { ... }

0 To reiterate, it is not possible to enable editing for a property if editing has been
disabled at the object-level.

30.4. fileAccept()

The fileAccept() attribute applies only to Blob or Clob parameters, indicating the type of file to
accept when uploading a new value. The attribute is also supported on parameters.

For example:

155

../rgant/rgant.pdf#_rgant-Collection_editing
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgant/rgant.pdf#_rgant-DomainObject_editing
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_methods_prefixes_disable
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Blob
../rgcms/rgcms.pdf#_rgcms_classes_value-types_Clob
../rgant/rgant.pdf#_rgant-Parameter_fileAccept

public class ScannedDocument {

(fileAccept="1image/*") ©)
private Blob scannedImage;
// getters and setters omitted

@ as per reference docs, either a media type (such as image/*) or a file type extension (such as
.png).

30.5. hidden()

Properties can be hidden at the domain-level, indicating that they are not visible to the end-user.
This attribute can also be applied to actions and collections.

It is also possible to use @Property#hidden() to hide an action at the domain layer.

Q Both options are provided with a view that in the future the view-layer semantics
may be under the control of (expert) users, whereas domain-layer semantics
should never be overridden or modified by the user.

For example:

public class Customer {
(hidden=Where.EVERYWHERE)
public int getInternalld() { ... }
(hidden=Where.ALL_TABLES)
public void updateStatus() { ... }

The acceptable values for the where parameter are:
* Where.EVERYWHERE or Where.ANYWHERE
The property should be hidden everywhere.
* Where.ANYWHERE
Synonym for everywhere.
* Where.0BJECT_FORMS
The property should be hidden when displayed within an object form.
* Where.PARENTED_TABLES

The property should be hidden when displayed as a column of a table within a parent object’s

156

http://www.w3schools.com/tags/att_input_accept.asp
../rgant/rgant.pdf#_rgant-ActionLayout_hidden
../rgant/rgant.pdf#_rgant-CollectionLayout_hidden
../rgant/rgant.pdf#_rgant-Property_hidden

collection.
e Where.STANDALONE TABLES

The property should be hidden when displayed as a column of a table showing a standalone list
of objects, for example as returned by a repository query.

* Where.ALL_TABLES

The property should be hidden when displayed as a column of a table, either an object’s *
collection or a standalone list. This combines PARENTED_TABLES and STANDALONE _TABLES.

* Where.NOWHERE

The property should not be hidden, overriding any other metadata/conventions that would
normally cause the property to be hidden.

For example, if a property is annotated with @Title, then normally this should be hidden from all
tables. Annotating with @Property(where=Where.NOWHERE) overrides this.

0 The RestfulObjects viewer has only partial support for these Where enums.

30.6. maxLength()

The maxLength() attribute applies only to String properties, indicating the maximum number of
characters that the user may enter (for example in a text field in the UI). The attribute It is ignored
if applied to properties of any other type. This attribute can also be applied to parameters.

That said, properties are most commonly defined on persistent domain objects (entities), in which
case the JDO @Column will in any case need to be specified. Apache Isis can infer the maxLength
semantic directly from the equivalent @Columnflength() annotation/attribute.

For example:
public class Customer {
.jdo.annotations.Column(length=30)

public String getFirstName() { ... }
public void setFirstName(String firstName) { ... }

In this case there is therefore no need for the @Property#maxLength() attribute.

30.6.1. Non-persistent properties

Of course, not every property is persistent (it could instead be derived), and neither is every
domain object an entity (it could be a view model). For these non persistable properties the
maxLength() attribute is still required.

157

../rgant/rgant.pdf#_rgant-Title
../ugvro/ugvro.pdf
../rgant/rgant.pdf#_rgant-Parameter_maxLength
../rgant/rgant.pdf#_rgant-Column

For example:

public class Customer {
.jdo.annotation.NotPersistent @®
(maxLength=100)
public String getFullName() { ... } @)
public void setFullName(String fullName) { ... } ®

® a non persisted (derived) property

@ implementation would most likely derive full name from constituent parts (eg first name,
middle initial, last name)

® implementation would most likely parse the input and update the constituent parts

30.7. mustSatisfy()

The mustSatisfy() attribute allows arbitrary validation to be applied to properties using an
(implementation of a) org.apache.isis.applib.spec.Specification object. The attribute is also
supported on parameters.

Q The specification implementations can (of course) be reused between properties
and parameters.

The Specification is consulted during validation, being passed the proposed value. If the proposed
value fails, then the value returned is the used as the invalidity reason.

For example:

public class StartWithCapitalletterSpecification
extends AbstractSpecification<String> { ©)
public String satisfiesSafely(String proposed) {
return "".equals(proposed)
? "Empty string"
: ICharacter.isUpperCase(proposed.charAt(0))
? "Does not start with a capital letter"
: null;
}
}
public class Customer {
(mustSatisfy=StartWithCapitallLetterSpecification.class)
public String getFirstName() { ... }

@ the AbstractSpecification class conveniently handles type-safety and dealing with null values.
The applib also provides SpecificationAnd and SpecificationOr to allow specifications to be

158

../rgant/rgant.pdf#_rgant-Parameter_mustSatisfy
../rgant/rgant.pdf#_rgant-Parameter_mustSatisfy

combined "algebraically".

It is also possible to provide translatable reasons. Rather than implement Specification, instead
implement Specification2 which defines the API:

public interface Specification2 extends Specification {
public TranslatableString satisfiesTranslatable(Object obj); @
}

@ Return null if specification satisfied, otherwise the reason as a translatable string

With Specification2 there is no need to implement the inherited satifies(Object); that method will
never be called.

30.8. notPersisted()

The (somewhat misnamed) notPersisted() attribute indicates that the collection should be excluded
from any snapshots generated by the XmlSnapshotService. This attribute is also supported for
collections.

This annotation does not specify that a property is not persisted in the
A JDO/DataNucleus objectstore. See below for details as to how to additionally
annotate the property for this.

For example:

public class Order {
(notPersisted=true)
public Order getPreviousOrder() {...}
public void setPreviousOrder(Order previousOrder) {...}

Historically this annotation also hinted as to whether the property’s value contents should be
persisted in the object store. However, the JDO/DataNucleus objectstore does not recognize this
annotation. Thus, to ensure that a property is actually not persisted, it should also be annotated
with @javax.jdo.annotations.NotPersistent.

For example:

159

../rgsvc/rgsvc.pdf#_rgsvc_integration-api_XmlSnapshotService
../rgant/rgant.pdf#_rgant-Collection_notPersisted

public class Order {
(notPersisted=true) O)
.jdo.annotations.NotPersistent @
public Order getPreviousOrder() {...}
public void setPreviousOrder(Order previousOrder) {...}

@ ignored by Apache Isis
@ ignored by JDO/DataNucleus

Alternatively, if the property is derived, then providing only a "getter" will also work:

public class Order {
public Order getPreviousOrder() {...}

30.9. optionality()

By default, Apache Isis assumes that all properties of an domain object or view model are required
(mandatory). The optionality() attribute allows this to be relaxed. The attribute is also supported
for parameters.

That said, properties are most commonly defined on persistent domain objects (entities), in which
case the JDO @Column should be specified. Apache Isis can infer the maxLength directly from the
equivalent @Column#length() annotation.

That said, properties are most commonly defined on persistent domain objects (entities), in which
case the JDO @Column will in any case need to be specified. Apache Isis can infer the optionality
semantic directly from the equivalent @Column#fallowsNull() annotation/attribute.

For example:

public class Customer {
.jdo.annotations.Column(allowsNull="true")
public String getMiddleInitial() { ... }
public void setMiddleInitial(String middleInitial) { ... }

In this case there is no need for the @Property#foptionality() attribute.

30.9.1. Mismatched defaults

If the @Column#allowsNull() attribute is omitted and the " @Property#optionality() attribute is also

160

../rgant/rgant.pdf#_rgant-Parameter_optionality
../rgant/rgant.pdf#_rgant-Column
../rgant/rgant.pdf#_rgant-Column

omitted, then note that Isis' defaults and JDO’s defaults differ. Specifically, Isis always assumes
properties are mandatory, whereas JDO specifies that primitives are mandatory, but all reference
types are optional.

When Apache Isis initializes it checks for these mismatches during its metamodel validation phase,
and will fail to boot ("fail-fast”) if there is a mismatch. The fix is usually to add the
@Column#allowsNull() annotation/attribute.

30.9.2. Superclass inheritance type

There is one case (at least) it may be necessary to annotate the property with both
@Column#fallowsNull and also @Property#optionality(). If the property is logically mandatory and is
in a subclass, but the mapping of the class hierarchy is to store both the superclass and subclass(es)
into a single table (ie a "roll-up” mapping using
javax.jdo.annotations.InheritanceStrateqy#SUPERCLASS_TABLE), then JDO requires that the property
is annotated as @Column#fallowsNull="true": its value will be not defined for other subclasses.

In this case we therefore require both annotations.
.jdo.annotations.PersistenceCapable

.jdo.annotations.Inheritance(strategy
public abstract class PaymentMethod {

InheritanceStrategy.NEW_TABLE)

}
.jdo.annotations.PersistenceCapable
.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPERCLASS_TABLE)
public class CreditCardPaymentMethod extends PaymentMethod {
private String cardNumber;
.jdo.annotations.Column(allowsNull="true")
(optionality=Optionality.MANDATORY)
public String getCardNumber() { return this.cardNumber; }
public void setCardNumber(String cardNumber) { this.cardNumber = cardNumber; }

Alternatively, you could rely on the fact that Apache Isis never looks at fields (whereas JDO does)
and move the JDO annotation to the field:

.jdo.annotations.PersistenceCapable
.jdo.annotations.Inheritance(strategy = InheritanceStrategy.SUPERCLASS_TABLE)
public class CreditCardPaymentMethod extends PaymentMethod {
.jdo.annotations.Column(allowsNull="true")
private String cardNumber;
public String getCardNumber() { return this.cardNumber; }
public void setCardNumber(String cardNumber) { this.cardNumber = cardNumber; }

161

However this at first glance this might be read as eing that the property is optional whereas Isis'
default (required) applies. Also, in the future Apache Isis may be extended to support reading
annotations from fields.

30.9.3. Non-persistent properties

Of course, not every property is persistent (it could instead be derived), and neither is every
domain object an entity (it could be a view model). For these non persistable properties the
optionality() attribute is still required.

For example:

public class Customer {
.jdo.annotation.NotPersistent @
(optionality=Optionality.OPTIONAL)
public String getFullName() { ... } @
public void setFullName(String fullName) { ... } ®

@ a non persisted (derived) property

@ implementation would most likely derive full name from constituent parts (eg first name,
middle initial, last name)

® implementation would most likely parse the input and update the constituent parts

The attribute has no meaning for a primitive type such as int: primitives will

Q always have a default value (e.g. zero). If optionality is required, then use the
corresponding wrapper class (e.g. java.lang.Integer) and annotate with
Parameter#foptionality() as required.

The values for the attribute are simply OPTIONAL or MANDATORY.
For example:
public class Customer {

public Order placeOrder(
final Product product,

(named = "Quantity")
final int quantity,
(optionality = Optionality.OPTIONAL)
(named = "Special Instructions")

final String instr) {

162

0 It is also possible to specify optionality using @Nullable annotation.

30.10. regexPattern()

There are three attributes related to enforcing regular expressions:

* The regexPattern() attribute validates the contents of any string property with respect to a
regular expression pattern. It is ignored if applied to properties of any other type. This attribute
can also be specified for parameters.

» The regexPatternFlags() attribute specifies flags that modify the handling of the pattern. The
values are those that would normally be passed to
java.util.regex.Patternffcompile(String,int).

* The related regexPatternReplacement() attribute specifies the error message to show if the
provided argument does not match the regex pattern.

For example:

public class Customer {

(
regexPattern = "(\\w+\\.)*\\w+@(\\w+\\.)+[A-Za-z]+",
regexPatternFlags=Pattern.CASE_INSENSITIVE,
regexPatternReplacement = "Must be valid email address (containing a '@')
symbol" @
)
public String getEmail() { ... }

@ Note that there is currently no i18n support for this phrase.

163

../rgant/rgant.pdf#_rgant-Nullable
../rgant/rgant.pdf#_rgant-Parameter_regexPattern

Chapter 31. @Propertylayout

The @PropertylLayout annotation applies to properties collecting together all UI hints within a single

annotation.

The table below summarizes the annotation’s attributes.

Table 20. @PropertylLayout attributes

Attribute

cssClass()

describedAs()

hidden()

labelPosition()

multilLine()

named()

namedEscaped()

promptStyle()

renderedAsDayBefore()

typicallength()

164

Values (default)

Any string valid as a
CSS class

String

EVERYWHERE,
OBJECT_FORMS,
PARENTED_TABLES,
STANDALONE _TABLES,
ALL_TABLES, NOWHERE
(NOWHERE)

LEFT, TOP, RIGHT, NONE
(LEFT)

Positive integer

String

true, false
(true)

DIALOG, INLINE,
AS_CONFIGURED
(AS_CONFIGURED)

true, false
(false)

Positive integer.

Description

the css class that a property should have, to
allow more targetted styling in application.css

description of this property, eg to be rendered in
a tooltip.

indicates where (in the UI) the property should
be hidden from the user.

in forms, the positioning of the label relative to
the property value.

Defaults is LEFT, unless multilLine in which case
TOP. The value RIGHT is only supported for
boolean properties.

It is also possible to change the default through a
configuration property

for string properties, render as a text area over
multiple lines.
If set > 1, then labelPosition defaults to TOP.

to override the name inferred from the
collection’s name in code.

A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.

whether to HTML escape the name of this
property.

how a property prompt should be displayed
within the UI

for date properties only, render the date as one
day prior to the actually stored date.

the typical entry length of a field, use to
determine the optimum width for display

../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_hidden
../rgant/rgant.pdf#_rgant-PropertyLayout_labelPosition
../rgant/rgant.pdf#_rgant-PropertyLayout_multiLine
../rgcfg/rgcfg.pdf#__rgcfg_configuring-core_isis-viewers-propertyLayout-labelPosition
../rgant/rgant.pdf#_rgant-PropertyLayout_multiLine
../rgant/rgant.pdf#_rgant-PropertyLayout_labelPosition
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_promptStyle
../rgant/rgant.pdf#_rgant-PropertyLayout_renderedAsDayBefore
../rgant/rgant.pdf#_rgant-PropertyLayout_typicalLength

Attribute

unchanging()

For example:

Values (default) Description

false, true indicates that the value held by the property

(false) never changes over time (even if other
properties of the object do change). Used as a
hint to the viewer not to redraw the property if
possible after an AJAX update.

public class ToDoltem {

(

cssClass="x-key",

named="Description of this <i>item</i>",
namedEscaped=false,

describedAs="What needs to be done",
labelPosition=LabelPosition.LEFT,
typicallength=80

)

public String getDescription() { ... }

It is also possible to apply the annotation to actions of domain services that are acting as
contributed properties.

v

v

As an alternative to using the @PropertylLayout annotation, a file-based layout can
be used (and is generally to be preferred since it is more flexible/powerful).

The annotation is one of a handful (others including @Collection,
@CollectionLayout and @Property) that can also be applied to the field, rather than
the getter method. This is specifically so that boilerplate-busting tools such as
Project Lombok can be used.

31.1. cssClass()

The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the property. Application-specific CSS can then be used to target and adjust
the Ul representation of that particular element.

This attribute can also be applied to domain objects, view models, actions collections and

parameters.

For example:

165

../rgant/rgant.pdf#_rgant-PropertyLayout_unchanging
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-Collection
../rgant/rgant.pdf#_rgant-CollectionLayout
../rgant/rgant.pdf#_rgant-Property
https://projectlombok.org/
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass

public class ToDoltem {
@PropertylLayout(cssClass="x-key")
public LocalDate getDueBy() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"dueBy": {
"propertylayout”: { "cssClass": "x-key" }
}

31.2. describedAs()

The describedAs() attribute is used to provide a short description of the property to the user. In the
Wicket viewer it is displayed as a 'tool tip'. The attribute can also be specified for collections,
actions, parameters, domain objects and view models.

For example:

public class Customer {
@DescribedAs("The name that the customer has indicated that they wish to be
"addressed as (e.g. Johnny rather than Jonathan)")
public String getFirstName() { ... }

+

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

"firstName:" {
"propertylayout”: {
"describedAs": "The name that the customer has indicated that they wish to be
addressed as (e.g. Johnny rather than Jonathan)"
}
}

31.3. labelPosition()

The 1abelPosition() attribute determines the positioning of labels for properties. This attribute can
also be specified for parameters.

The positioning of labels is typically LEFT, but can be positioned to the TOP. The one exception is

166

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs
../rgant/rgant.pdf#_rgant-ViewModelLayout_describedAs
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ParameterLayout_labelPosition

multiline() string properties, where the label defaults to TOP automatically (to provide as much
real-estate for the multiline text field as possible).

For boolean properties a positioning of RIGHT is also allowed; this is ignored for all other types.
It is also possible to suppress the label altogether, using NONE.

For example:

public class ToDoltem {
@PropertylLayout(
labelPosition=LabelPosition.TOP

)
public String getDescription() { ... }
public void setDescription(String description) { ... }

To get an idea of how these are rendered (in the Wicket viewer), we can look at the (non-ASF) Isis
addons' todoapp that happens to have examples of most of these various label positions.

The default LEFT label positioning is used by the cost property:

Cost 075

The TOP label positioning is used by the category property:

Category

Domestic v

Labels are suppressed, using NONE, for the subcategory property:

Category
Domestic v
Shopping v

The todoapp’s complete (boolean) property renders the label to the LEFT (the default):

Whether this todo item has been
completed or not. m

Moving the label to the RIGHT looks like:

Whether this todo item has been completed or not.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

167

../rgant/rgant.pdf#_rgant-ParameterLayout_multiLine
../ugvw/ugvw.pdf
http://github.com/isisaddons/isis-app-todoapp
http://github.com/isisaddons/isis-app-todoapp
images/reference-annotations/PropertyLayout/labelPosition-LEFT.png
images/reference-annotations/PropertyLayout/labelPosition-TOP.png
images/reference-annotations/PropertyLayout/labelPosition-NONE.png
images/reference-annotations/PropertyLayout/labelPosition-boolean-LEFT.png
images/reference-annotations/PropertyLayout/labelPosition-boolean-RIGHT.png
../ugvw/ugvw.pdf#_ugvw_layout_file-based

0 FIXME - change to .layout.xml syntax instead.

"description”: {
"propertylayout”: {
"labelPosition": "TOP"
}

Specifying a default setting for label positions

If you want a consistent look-n-feel throughout the app, eg all property labels to
the top, then it’d be rather frustrating to have to annotate every property.

Instead, a default can be specified using a configuration property in
isis.properties:

isis.viewers.propertylayout.labelPosition=TOP

or
isis.viewers.propertylayout.labelPosition=LEFT

If these are not present then Apache Isis will render according to internal
defaults. At the time of writing, this means labels are to the left for all datatypes
except multiline strings.

31.4. multilLine()

The multiline() attribute specifies that the text field for a string property should span multiple
lines. It is ignored for other property types. The attribute is also supported for parameters.

For example:

public class BugReport {
(

numberOfLines=10

)
public String getStepsToReproduce() { ... }
public void setStepsToReproduce(String stepsToReproduce) { ... }

Here the stepsToReproduce will be displayed in a text area of 10 rows.

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

168

../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../rgant/rgant.pdf#_rgant-ParameterLayout_multiLine
../ugvw/ugvw.pdf#_ugvw_layout_file-based

0 FIXME - change to .layout.xml syntax instead.

"stepsToReproduce": {
"propertylayout”: {
"numberOfLines": 10

}

0 If set > 1 (as would normally be the case), then the default 1abelPosition defaults
to TOP (rather than LEFT, as would normally be the case).

31.5. named()

The named() attribute explicitly specifies the property’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for actions,
collections, parameters, domain objects, view models and domain services.

Following the don’t repeat yourself principle, we recommend that you only use

Q this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

By default the name is HTML escaped. To allow HTML markup, set the related namedEscaped()
attribute to false.

For example:

public class ToDoltem {
(

named="Description of this <i>item</i>",
namedEscaped=false

)
public String getDescription() { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

0 FIXME - change to .layout.xml syntax instead.

169

../rgant/rgant.pdf#_rgant-PropertyLayout_labelPosition
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_named
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
../ugvw/ugvw.pdf#_ugvw_layout_file-based

"description": {
"propertylayout”: {
"named": "Description of this <i>item</i>",
"namedEscaped”: false

Q The framework also provides a separate, powerful mechanism for
internationalization.

31.6. promptStyle()

The promptStyle() attribute is used to specify whether, when editing a domain object property, the
new value for the property is prompted by way of a dialog box, or is prompted using an inline
panel (replacing the property on the page).

If the attribute is not set, then the value of the configuration property
isis.viewer.wicket.promptStyle is used. If this is itself not set, then an inline prompt is used.

For example:

public class Customer {

(
promptStyle=PromptStyle.INLINE ©)

)
public int getNotes(){ ... }
public void setNotes(String notes) { ... }

@ prompt for the new value for the property using an inline panel Note that the value
INLINE_AS_IF_EDIT does not make sense for properties; if specified then it will be interpreted as
just INLINE.

Alternatively, the promptStyle() can be specified using file-based layouts.

0 FIXME - provide an example here

31.7. renderedAsDayBefore()

The renderedAsDayBefore() attribute applies only to date properties whereby the date will be
rendered as the day before the value actually held in the domain object. It is ignored for properties
of other types. This attribute is also supported for parameters.

This behaviour might at first glance appear odd, but the rationale is to support the use case of a
sequence of instances that represent adjacent intervals of time. In such cases there would typically
be startDate and endDate properties, eg for all of Q2. Storing this as a half-closed interval —eg [1-

170

../ugbtb/ugbtb.pdf#_ugbtb_i18n
../ugvw/ugvw.pdf#_ugvw_configuration-properties
../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ParameterLayout_renderedAsDayBefore

Apr-2015, 1-July-2015) — can substantially simplify internal algorithms; the endDate of one interval
will correspond to the startDate of the next.

However, from an end-user perspective the requirement may be to render the interval as a fully
closed interval; eg the end date should be shown as 30-Jun-2015.

This attribute therefore bridges the gap; it presents the information in a way that makes sense to an
end-user, but also stores the domain object in a way that is easy work with internally.

For example:

public class Tenancy {
public LocalDate getStartDate() { ... }
public void setStartDate(LocalDate startDate) { ... }
(

renderedAsDayBefore=true

)
public LocalDate getEndDate() { ... }

public void setEndDate(LocalDate EndDate) { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

6 FIXME - change to .layout.xml syntax instead.

"endDate": {
"propertylayout”: {
"renderedAsDayBefore": true

}

31.8. typicallength()

The typicallength() attribute indicates the typical length of a string property. It is ignored for
properties of other types. The attribute is also supported for parameters.

The information is intended as a hint to the UI to determine the space that should be given to
render a particular string property. That said, note that the Wicket viewer uses the maximum
space available for all fields, so in effect ignores this attribute.

For example:

171

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgant/rgant.pdf#_rgant-ParameterLayout_typicalLength
../ugvw/ugvw.pdf

public class Customer {

.jdo.annotations.Column(length=30)

(typicallength=20)

public String getFirstName() { ... }
public void setFirstName(String firstName) { ... }

As an alternative to using the annotation, the dynamic file-based layout can be used instead, eg:

i

FIXME - provide a .layout.xml example here.

31.9. unchanging()

The unchanging() attribute is used to indicate that the value held by the property never changes

over time, even when other properties of the object do change.

Setting this attribute to true is used as a hint to the viewer to not redraw the property after an AJAX
update of some other property/ies of the object have changed. This is primarily for performance, eg

can improve the user experience when rendering PDFs/blobs.

Note that for this to work, the viewer will also ensure that none of the property’s parent component

(such as a tab group panel) are re-rendered.

i

For example:

Design note: we considered implementing this an "immutable" flag on the
@Property annotation (because this flag is typically appropriate for
immutable/unchanging properties of a domain object). However, we decided not
to do that, on the basis that it might be interpreted as having a deeper impact
within the framework than simply a hint for rendering.

public class Document {

(

unchanging=true

)

public Blob getBlob(){ ... }
public void setBlob(Blob blob) { ... }

172

../ugvw/ugvw.pdf#_ugvw_layout_file-based

Chapter 32. @RequestScoped (javax)

The @javax.enterprise.context.RequestScoped JSR-299 CDI annotation is used to specify that a
domain service should be request-scoped rather than a singleton.

Although Apache Isis does not (currently) leverage CDI, the semantics are the same as request-
scoped service; a new instance is created for each HTTP request, reserved for the exclusive use of
all objects interacted with during that request.

One of the built-in domain services that uses this annotation is Scratchpad, intended to allow the
arbitrary sharing of data between objects. Here is the full source code of this service is:

(
nature = NatureOfService.DOMAIN

)

public class Scratchpad {
private final Map<Object, Object> userData = Maps.newHashMap(); @

public Object get(Object key) {
return userData.get(key); @
}

public void put(Object key, Object value) {
userData.put(key, value); ©)
}

public void clear() {
userData.clear(); @
}

@ Provides a mechanism for each object being acted upon to pass data to the next object.
@ Obtain user-data, as set by a previous object being acted upon.

® Set user-data, for the use of a subsequent object being acted upon.

@ Clear any user data.

The vast majority of domain services in Apache Isis tend to be singletons (which requires no special
annotation); but as you can see setting up request-scoped services is very straightforward.

Behind the covers Apache Isis creates a (singleton) wrapper for the domain

0 service; the individual request-scoped instances are held in a thread-local of this
wrapper. One consequence of this implementation is that request-scoped
methods should not be marked as final.

173

https://jcp.org/en/jsr/detail?id=299
../rgant/rgant.pdf#_rgant-DomainService
../rgsvc/rgsvc.pdf#_rgsvc_core-domain-api_Scratchpad

Chapter 33. @Title

The @Title annotation is used to indicate which property or properties make up the object title. If
more than one property is used, the order can be specified (using the same Dewey-decimal notation
as used by @MemberOrder) and the string to use between the components can also be specified.

For example:

public void Customer {
(sequence="1.0")
public String getlLastName() { ... } ©)

(sequence="1.5", prepend=", ")
public String getFirstName() { ... }

(sequence="1.7", append=".")
public String getMidInitial() { ... }

@ backing field and setters omitted
could be used to create names of the style "Bloggs, Joe K."

It is also possible to annotate reference properties; in this case the title will return the title of the
referenced object (rather than, say, its string representation).

An additional convention for @Title properties is that they are hidden in tables (in other words, it
implies @Hidden(where=Where.ALL_TABLES). For viewers that support this annotation (for example, the
Wicket viewer), this convention excludes any properties whose value is already present in the title
column. This convention can be overridden using @Hidden(where=Where.NOWHERE).

33.1. Lombok support
If Project Lombok is being used, then @Title can be specified on the backing field.

For example:

174

../dg/dg.pdf#_dg_ide_project-lombok

public void Customer {
@Title(sequence="1.0")
@Getter @Setter
private String name;

@Title(sequence="1.5", prepend=", ")
@Getter @Setter
private String firstName;

@Title(sequence="1.7", append=".")

@Getter @Setter
private String midInitial;

175

Chapter 34. @ViewModel

The @ViewModel annotation, applied to a class, indicates that the class is a view model. It’s a synonym
for using @DomainObject(nature=VIEW_MODEL).

View models are not persisted to the database, instead their state is encoded within their identity
(ultimately represented in the URL).

For example:

public class CustomerViewModel {
public CustomerViewModel() {}
public CustomerViewModel(String firstName, int lastName) {
this.firstName = firstName;
this.lastName = lastName;

Although there are several ways to instantiate a view model, we recommend that they are
instantiated using an N-arg constructor that initializes all relevant state. The ServiceRegistry can
then be used to inject dependencies into the view model. For example:

Customer cust = ...
CustomerViewModel vm = new CustomerViewModel(cust.qgetFirstName(),cust.getLastName());
serviceRegistry.injectServicesInto(vm);

Q See this tip for further discussion about instantiating view models.

View models must have a no-arg constructor; this is used internally by the framework for
subsequent "recreation”.

The view model’s memento will be derived from the value of the view model object’s

properties. Any <a href="../rgant/rgant.pdf#rgant-
Property_notPersisted"><code>@Property#notPersisted()</code> properties will be excluded
from the memento, as will any <a href="../rgant/rgant.pdf#_rgant-

Programmatic"><code>@Programmatic</code> properties. Properties that are merely hidden _are included in the memento.

Only properties supported by the configured MementoService can be wused. The default
implementation supports all the value types and persisted entities.

View models, as defined by @ViewModel (or @DomainObject(nature=VIEW_MODEL) for that matter) have
some limitations:

* view models cannot hold collections other view models (simple properties are supported,

176

../rgsvc/rgsvc.pdf#_rgsvc_metadata-api_ServiceRegistry
../ugbtb/ugbtb.pdf#_ugbtb_hints-and-tips_view-model-instantiation
../rgsvc/rgsvc.pdf#_rgsvc_integration-api_MementoService

though)
* collections (of either view models or entities) are ignored.

* not every data type is supported,

However, these limitations do not apply to JAXB view models. If you are using view models heavily,
you may wish to restrict yourself to just the JAXB flavour.

The @ViewModel does not allow the objectType to be specified, meaning that it is
incompatible with the metamodel validation check ennabled by the
0 explicitObjectType configuration property.

Instead, use @DomainObject#nature() with Nature.VIEW_MODEL, and specify
@DomainObject#objectType().

177

../ugfun/ugfun.pdf#_ugfun_programming-model_view-models_jaxb
../rgcfg/rgcfg.pdf#__rgcfg_configuring-core_metamodel-validation
../rgant/rgant.pdf#_rgant-DomainObject_nature
../rgant/rgant.pdf#_rgant-DomainObject_objectType

Chapter 35. @ViewModellayout

The @ViewModellayout annotation is identical to the @DomainObjectlayout, but is provided for
symmetry with domain objects that have been annotated using @ViewModel (rather than

@DomainObject(nature=VIEW_MODEL)).

The table below summarizes the annotation’s attributes.

Table 21. @ViewModel attributes

Attribute Values (default) Description
cssClass() Any string valid as a the css class that a domain class (type) should
CSS class have, to allow more targetted styling in
application.css
cssClassFa() Any valid Font specify a font awesome icon for the action’s
awesome icon name menu link or icon.
cssClassFaPosition() LEFT, RIGHT Currently unused.
(LEFT)
describedAs() String. description of this class, eg to be rendered in a
tooltip.
named() String. to override the name inferred from the action’s
name in code.
A typical use case is if the desired name is a
reserved Java keyword, such as default or
package.
paged() Positive integer the page size for instances of this class when
rendered within a table (as returned from an
action invocation)
plural() String. the plural name of the class

For example:

(

cssClass="x-analysis",
cssClassFa="fa-piechart",
describedAs="Analysis of todo items by category"

)

public class CategoryPieChart { ... }

@ this annotation is intended for use with @ViewModel. If a view model has been specified using the

equivalent

@DomainObject(nature=Nature.VIEW_MODEL), then we

@DomainObjectLayout instead.

178

recommend you use

../rgant/rgant.pdf#_rgant-DomainObjectLayout
../rgant/rgant.pdf#_rgant-ViewModel
../rgant/rgant.pdf#_rgant-DomainObject_nature
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssclass
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClassFa
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/
../rgant/rgant.pdf#_rgant-ViewModelLayout_describedAs
../rgant/rgant.pdf#_rgant-ViewModelLayout_named
../rgant/rgant.pdf#_rgant-ViewModelLayout_paged
../rgant/rgant.pdf#_rgant-ViewModelLayout_plural
../rgant/rgant.pdf#_rgant-DomainObject_nature
../rgant/rgant.pdf#_rgant-DomainObjectLayout

Note that there is (currently) no support for specifying UI hints for view models
through the dynamic .1layout. json file (only for properties, collections and actions
are supported).

35.1. cssClass()

The cssClass() attribute can be used to render additional CSS classes in the HTML (a wrapping
<div>) that represents the view model. Application-specific CSS can then be used to target and
adjust the Ul representation of that particular element.

This attribute can also be applied to domain objects, actions properties, collections and parameters.

For example:

@ViewModel
@ViewModellLayout(cssClass="x-analysis")
public class CategoryPieChart { ... }

The similar @ViewModellLayout#cssClassFa() annotation attribute is also used as a
hint to apply CSS, but in particular to allow Font Awesome icons to be rendered as
the icon for classes.

35.2. cssClassFa()

The cssClassFa() attribute is used to specify the name of a Font Awesome icon name, to be
rendered as the domain object’s icon.

These attribute can also be applied to domain objects to specify the object’s icon, and to actions to
specify an icon for the action’s representation as a button or menu item.

If necessary the icon specified can be overridden by a particular object instance using the
iconName() method.

For example:

@ViewModel
@ViewModellLayout(
cssClassFa="fa-piechart"

)
public class CategoryPieChart { ... }

There can be multiple "fa-" classes, eg to mirror or rotate the icon. There is no need to include the
mandatory fa "marker" CSS class; it will be automatically added to the list. The fa- prefix can also
be omitted from the class names; it will be prepended to each if required.

The related cssClassFaPosition() attribute is currently unused for domain objects; the icon is

179

../ugvw/ugvw.pdf#_ugvw_layout_file-based
../rgcfg/rgcfg.pdf#_rgcfg_application-specific_application-css
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClass
../rgant/rgant.pdf#_rgant-ActionLayout_cssClass
../rgant/rgant.pdf#_rgant-PropertyLayout_cssClass
../rgant/rgant.pdf#_rgant-CollectionLayout_cssClass
../rgant/rgant.pdf#_rgant-ParameterLayout_cssClass
../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClassFa
http://fortawesome.github.io/Font-Awesome/icons/
http://fortawesome.github.io/Font-Awesome/icons/
../rgant/rgant.pdf#_rgant-DomainObjectLayout_cssClassFa
../rgant/rgant.pdf#_rgant-ActionLayout_cssClassFa
../rgcms/rgcms.pdf#_rgcms_methods_reserved_iconName

always rendered to the left.

The similar @ViewModellLayout#icssClass() annotation attribute is also used as a
hint to apply CSS, but for wrapping the representation of an object or object
member so that it can be styled in an application-specific way.

35.3. describedAs()

The describedAs() attribute is used to provide a short description of the view model to the user. In
the Wicket viewer it is displayed as a 'tool tip'. The describedAs() attribute can also be specified for
collections, properties, actions, parameters and domain objects.

For example:

@ViewModel
@ViewModellLayout(
cssClass="x-analysis",
cssClassFa="fa-piechart"”,
describedAs="Analysis of todo items by category"

)
public class CategoryPieChart { ... }

35.4. named()

The named() attribute explicitly specifies the view model’s name, overriding the name that would
normally be inferred from the Java source code. This attribute can also be specified for actions,
collections, properties, parameters, domain objects and domain services.

Following the don’t repeat yourself principle, we recommend that you only use

Q this attribute when the desired name cannot be used in Java source code.
Examples of that include a name that would be a reserved Java keyword (eg
"package"), or a name that has punctuation, eg apostrophes.

For example:

@ViewModel
@ViewModellLayout(
named="PieChartAnalysis"
)
public class PieChartAnalysisViewModel {
}
Q The framework also provides a separate, powerful mechanism for
internationalization.

180

../rgant/rgant.pdf#_rgant-ViewModelLayout_cssClass
../ugvw/ugvw.pdf
../rgant/rgant.pdf#_rgant-CollectionLayout_describedAs
../rgant/rgant.pdf#_rgant-PropertyLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_describedAs
../rgant/rgant.pdf#_rgant-ParameterLayout_describedAs
../rgant/rgant.pdf#_rgant-DomainObjectLayout_describedAs
../rgant/rgant.pdf#_rgant-ActionLayout_named
../rgant/rgant.pdf#_rgant-CollectionLayout_named
../rgant/rgant.pdf#_rgant-PropertyLayout_named
../rgant/rgant.pdf#_rgant-ParameterLayout_named
../rgant/rgant.pdf#_rgant-DomainObjectLayout_named
../rgant/rgant.pdf#_rgant-DomainServiceLayout_named
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
../ugbtb/ugbtb.pdf#_ugbtb_i18n

35.5. paged()

The paged() attribute specifies the number of rows to display in a standalone collection, as returned
from an action invocation. This attribute can also be applied to collections and domain objects.

The RestfulObjects viewer currently does not support paging. The Wicket viewer
does support paging, but note that the paging is performed client-side rather than

A server-side.

We therefore recommend that large collections should instead be modelled as
actions (to allow filtering to be applied to limit the number of rows).

For example:

@ViewModel
@ViewModellLayout(paged=15)
public class OrderAnalysis {

}

It is also possible to specify a global default for the page size of standalone collections, using the
configuration property isis.viewer.paged.standalone.

35.6. plural()

When Apache Isis displays a standalone collection of several objects, it will label the collection
using the plural form of the object type.

By default the plural name will be derived from the end of the singular name, with support for
some basic English language defaults (eg using "ies" for names ending with a "y").

The plural() attribute allows the plural form of the class name to be specified explicitly. This
attribute is also supported for domain objects.

For example:

@ViewModel
@ViewModellLayout(plural="Children")
public class Child {

}

181

../rgant/rgant.pdf#_rgant-CollectionLayout_paged
../rgant/rgant.pdf#_rgant-DomainObjectLayout_paged
../ugvro/ugvro.pdf
../ugvw/ugvw.pdf
../rgcfg/rgcfg.pdf#_rgcfg_configuring-core
../rgant/rgant.pdf#_rgant-DomainObjectLayout_plural

Chapter 36. @XmlJavaTypeAdapter (jaxb)

The JAXB @XmlJavaTypeAdapter annotation is used with the framework-provided
PersistentEntityAdapter to instruct JAXB to serialize references to persistent entities using the
canonical 0idDto complex type: the object’s type and its identifier. This is the formal XML
equivalent to the Bookmark provided by the BookmarkService.

For example:

(PersistentEntityAdapter.class)
public class ToDoltem ... {

}

This annotation therefore allows view models/DTOs to have references to persistent entities; a
common idiom.

For a more complete discussion of writing JAXB view models/DTOs, see this topic in the user guide.

182

../rgsvc/rgsvc.pdf#_rgsvc_integration-api_BookmarkService
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models

Chapter 37. @XmlRootElement (jaxb)

The @XmlRootElement annotation provides an alternative way to define a view model, in particular
one intended to act as a DTO for use within RestfulObjects viewer, or which contains arbitrarily
complex state.

A view model is a non-persisted domain object whose state is converted to/from a string memento.
In the case of a JAXB-annotated object this memento is its XML representation. JAXB generally
requires that the root element of the XML representation is annotated with @XmlRootElement.
Apache Isis makes this a mandatory requirement.

In comparison to using either the ViewModel interface or the @ViewModel annotation, using
@XmlRootElement has a couple of significant advantages:

* the view model can be used as a "canonical” DTO, for example when accessing data using the
RestfulObjects viewer in combination with the ContentMappingService.

This provides a stable and versioned API to access data in XML format using whatever client-
side technology may be appropriate.

* the XML graph can be as deep as required; in particular it can contain collections of other
objects.

In contrast, if the @ViewModel annotation is used then only the state of the properties (not
collections) is captured. If using ViewModel interface then arbitrary state (including that of
collections), however the programmer must write all the code by hand

The main disadvantages of using JAXB-annotated view models is that any referenced persistent
entity must be annotated with the @XmlJavaTypeAdapter, using the framework-provided
PersistentEntityAdapter. This adapter converts any references to such domain entities using the
0idDto complex type (as defined by the Apache Isis common schema): the object’s type and its
identifier.

The memento string for view models is converted into a form compatible with
use within a URL. This is performed by the UrlEncodingService, the default

Q implementation of which simply encodes to base 64. If the view model XML
graph is too large to be serialized to a string, then an alternative implementation
(eg which maps XML strings to a GUID, say) can be configured using the
technique described in here in the user guide.

37.1. Example

This example is taken from the (non-ASF) Isis addons' todoapp:

183

../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models
../ugvro/ugvro.pdf
../rgcms/rgcms.pdf#_rgcms_classes_super_ViewModel
../rgant/rgant.pdf#_rgant-ViewModel
../ugvro/ugvro.pdf
../rgsvc/rgsvc.pdf#_rgsvc_presentation-layer-spi_ContentMappingService
../rgant/rgant.pdf#_rgant-XmlJavaTypeAdapter
../rgcms/rgcms.pdf#_rgcms_schema-common
../rgsvc/rgsvc.pdf#_rgsvc_presentation-layer-spi_UrlEncodingService
../ugbtb/ugbtb.pdf#_ugbtb_hints-and-tips_replacing-default-service-implementations
http://github.com/isisaddons/isis-app-todoapp

@XmlRootElement(name = "toDoItemDto") ©)
public class ToDoItemDto implements Dto {

@Getter @Setter @

protected String description;

@Getter @Setter

protected String category;

@Getter @Setter

protected String subcategory;

@Getter @Setter

protected BigDecimal cost;

@ identifies this class as a view model and defines the root element for JAXB serialization

@ using Project Lombok for getters and setters

37.2. See also

Although (like any other viewmodel) a JAXB-annotated can have behaviour (actions) and UI hints,
you may wish to keep the DTO "clean", just focused on specifying the data contract.

Behaviour can therefore be provided using mixins (annotated with @Mixin), while UI events can be
used to obtain title, icons and so on.

For a more complete discussion of writing JAXB view models/DTOs, see this topic in the user guide.

184

../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_mixins
../rgant/rgant.pdf#_rgant-Mixin
../rgcms/rgcms.pdf#_rgcms_classes_uievent
../ugfun/ugfun.pdf#_ugfun_building-blocks_types-of-domain-objects_view-models

	Annotations
	Table of Contents
	Chapter 1. Annotations
	1.1. Other Guides
	1.2. Examples

	Chapter 2. Summary
	2.1. Core annotations
	2.2. Other Isis Annotations
	2.3. JDO Annotations
	2.4. Java EE Annotations
	2.5. Deprecated Annotations
	2.6. Incomplete/partial support

	Chapter 3. @Action
	3.1. associateWith()
	3.2. Command Persistence and Processing
	3.3. domainEvent()
	3.4. hidden()
	3.5. invokeOn()
	3.6. publishing()
	3.7. restrictTo()
	3.8. semantics()
	3.9. typeOf()

	Chapter 4. @ActionLayout
	4.1. bookmarking()
	4.2. contributedAs()
	4.3. cssClass()
	4.4. cssClassFa()
	4.5. describedAs()
	4.6. hidden()
	4.7. named()
	4.8. position()

	Chapter 5. @Collection
	5.1. domainEvent()
	5.2. editing()
	5.3. hidden()
	5.4. notPersisted()
	5.5. typeOf()

	Chapter 6. @CollectionLayout
	6.1. cssClass()
	6.2. defaultView()
	6.3. describedAs()
	6.4. hidden()
	6.5. named()
	6.6. paged()
	6.7. render()
	6.8. sortedBy()

	Chapter 7. @Column (javax.jdo)
	7.1. Nullability
	7.2. Length for Strings
	7.3. Length/scale for BigDecimals
	7.4. Hints and Tips
	7.5. Mapping Blobs and Clobs

	Chapter 8. @Digits (javax)
	Chapter 9. @Discriminator (javax.jdo)
	9.1. Examples
	9.2. Precedence

	Chapter 10. @DomainObject
	10.1. auditing()
	10.2. autoCompleteRepository()
	10.3. bounded()
	10.4. createdLifecycleEvent()
	10.5. editing()
	10.6. loadedLifecycleEvent()
	10.7. mixinMethod()
	10.8. nature()
	10.9. persistedLifecycleEvent()
	10.10. persistingLifecycleEvent()
	10.11. objectType()
	10.12. publishing()
	10.13. removingLifecycleEvent()
	10.14. updatingLifecycleEvent()
	10.15. updatedLifecycleEvent()

	Chapter 11. @DomainObjectLayout
	11.1. bookmarking()
	11.2. cssClass()
	11.3. cssClassFa()
	11.4. cssClassUiEvent()
	11.5. describedAs()
	11.6. iconUiEvent()
	11.7. named()
	11.8. paged()
	11.9. plural()
	11.10. titleUiEvent()

	Chapter 12. @DomainService
	12.1. nature()
	12.2. objectType()
	12.3. repositoryFor()

	Chapter 13. @DomainServiceLayout
	13.1. menuBar()
	13.2. menuOrder()
	13.3. named()

	Chapter 14. @Facets
	Chapter 15. @HomePage
	Chapter 16. @Inject (javax)
	16.1. Alternative syntaxes
	16.2. Injecting collection of services
	16.3. Manually injecting services

	Chapter 17. @MemberGroupLayout
	Chapter 18. @MemberOrder
	Chapter 19. @Mixin
	19.1. method()

	Chapter 20. @Nullable (javax)
	Chapter 21. @NotPersistent (javax.jdo)
	Chapter 22. @MinLength
	Chapter 23. @Parameter
	23.1. fileAccept()
	23.2. maxLength()
	23.3. mustSatisfy()
	23.4. optionality()
	23.5. regexPattern()

	Chapter 24. @ParameterLayout
	24.1. cssClass()
	24.2. describedAs()
	24.3. labelPosition()
	24.4. multiLine()
	24.5. named()
	24.6. renderedAsDayBefore()
	24.7. typicalLength()

	Chapter 25. @PersistenceCapable (javax.jdo)
	25.1. Examples
	25.2. Precedence

	Chapter 26. @PostConstruct (javax)
	Chapter 27. @PreDestroy (javax)
	Chapter 28. @PrimaryKey (javax.jdo)
	Chapter 29. @Programmatic
	Chapter 30. @Property
	30.1. Command Persistence and Processing
	30.2. domainEvent()
	30.3. editing()
	30.4. fileAccept()
	30.5. hidden()
	30.6. maxLength()
	30.7. mustSatisfy()
	30.8. notPersisted()
	30.9. optionality()
	30.10. regexPattern()

	Chapter 31. @PropertyLayout
	31.1. cssClass()
	31.2. describedAs()
	31.3. labelPosition()
	31.4. multiLine()
	31.5. named()
	31.6. promptStyle()
	31.7. renderedAsDayBefore()
	31.8. typicalLength()
	31.9. unchanging()

	Chapter 32. @RequestScoped (javax)
	Chapter 33. @Title
	33.1. Lombok support

	Chapter 34. @ViewModel
	Chapter 35. @ViewModelLayout
	35.1. cssClass()
	35.2. cssClassFa()
	35.3. describedAs()
	35.4. named()
	35.5. paged()
	35.6. plural()

	Chapter 36. @XmlJavaTypeAdapter (jaxb)
	Chapter 37. @XmlRootElement (jaxb)
	37.1. Example
	37.2. See also

